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ABSTRACT

AERODYNAMIC DESIGN OPTIMIZATION WITH
CONSISTENTLY DISCRETE SENSITIVITY DERIVATIVES
VIA THE INCREMENTAL ITERATIVE METHOD

by
Vamshi M. Korivi

Old Dominion University, 1995

Director: Dr. A. C. Taylor Il
An incremental iterative formulation together with the well-known spatially split
approximate-factorization algorithm, is presented for solving the large, sparse systems
of linear equations that are associated with aerodynamic sensitivity analysis. This
formulation is also known as the “delta” or “correction” form. For the smaller two
dimensional problems, a direct method can be applied to solve these linear equations
in either the standard or the incremental form, in which case the two are equivalent.
However, iterative methods are needed for larger two-dimensional and three dimensional
applications because direct methods require more computer memory than is currently
available. Iterative methods for solving these equations in the standard form are generally
unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome
when these equations are cast in the incremental form. The methodology is successfully
implemented and tested using an upwind cell-centered finite-volume formulation applied
in two dimensions to the thin-layer Navier-Stokes equations for external flow over an
airfoil. In three dimensions this methodology is demonstrated with a marching-solution

algorithm for the Euler equations to calculate supersonic flow over the High-Speed

Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with



the incremental iterative method from a marching Euler code are used in a design-
improvement study of the HSCT configuration that involves thickness. camber, and

planform design variables.
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Chapter 1

INTRODUCTION

Rapid advances in computer technology have enabled fluid-flow simulations around
tull aircraft configurations with computational fluid dynamics (CFD). Numerical simula-
tion of complicated external and internal flows has become a routine practice, replacing
the expensive alternative of wind-tunnel testing. Successes that are mainly attributed
to the rapid development of CFD include numerical modeling of the governing fluid
physics, the ability to define the surfaces of a complicated geometry with volume-grid
generation around these surfaces, and solution of the system of equations with efficient
iterative solvers. Advanced research CFD codes such as CFL3D [1] and TLNS3D [2]

are representative examples of the current state of the art in CED.

The emerging field of CFD has reached a mature stage in which these codes can be
employed in a multidisciplinary environment. In his review paper, Jameson {3] concluded
that the following challenges remain to be met in the area of CFD: development of
accurate higher order schemes: development of better schemes for capturing shocks
and internal discontinuities; grid adaptation:; use of unstructured grids to easily model
the flow over and through complicated configurations; turbulence modeling; and design

optimization.

The National Aeronautics and Space Administration (NASA) research efforts to
ingorporate high-fidelity single-discipline codes (including advanced CFD codes) in a
multidisciplinary design procedure include the High-Speed Airframe Integration Research

(HiSAIR) project [4] and the Computational Aerosciences (CAS) project of the High



Performance Computing and Communications (HPCC) program [5]. The HiSAIR
project is primarily focused on High-Speed Civil Transport (HSCT) design activity,
with the goal of developing advanced methodology and a computational environment
for multidisciplinary analysis and design optimization. The HSCT is one application
of the CAS project. These programs are committed to muludisciplinary design via a

methodology known as sensitivity analysis (SA).

In reality, the interaction of many disciplines (including aerodynamics) must be con-
sidered in predicting the performance of an entire aircraft, and a methodology is needed
to account for this interaction between the various disciplines. For example, the design
of an aircraft wing involves the interaction of several disciplines (e.g., aerodynamics,
structures. controls, and materials). Sobieski [6] (a pioneer in the development of the
multidisciplinary approach) formulated a gradient-based multidisciplinary design (MdD)
procedure based on the “divide and conquer” approach, where many disciplines are
involved in the design process. This approach utilizes the required function response(s)
of interest for each individual discipline, as well as the sensitivity derivatives (SD’s)
trom each individual discipline (ie., the derivatives of each individual discipline’s
output functions with respect to its input (design) variables). Sobieski [7] addressed
the need to obtain SD’s from advanced CFD codes. so that these codes can be used in
a multidisciplinary design environment; furthermore, he derived the general individual-

discipline discrete sensitivity equation, which is based on the implicit function theorem.

1.1 Literature Review

An SA is defined as the calculation of slopes, known as SD’s, which are derivatives
of the response(s) (output function(s)) of a particular system of interest taken with respect
to the design variable(s) of interest. For the designer, an accurate knowledge of the SD’s
of a particular system under consideration can be used in many ways (e.g., for function

approximation, trade-off design, and multidisciplinary design optimization (MDO)).
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1.1.1 Sensitivity Analysis

Several procedures exist whereby the SD’s can be obtained from advanced CED
codes. For example, these SD’s can be calculated by using finite differencing, by
hand differentiation, or by using symbolic manipulators, such as MACSYMA [8].
Altemnatively, an automatic differentiation tool such as ADIFOR [9] can be used. A
general yet conceptually simple method for computing aerodynamic SD’s is the method
of “brute force” finite differencing. For this method, under the assumption that forward
finite-difference approximations are used, the CFD flow-analysis code is used to generate
a single converged flow solution for a slightly perturbed value of each design variable
for which SD’s are required. Although this method of computing the SD’s is used [10],

there are several disadvantages:

1. Extremely high computational costs, particularly for three dimensions, because the
number of flow analyses required in a typical design problem becomes large as the

number of design variables becomes large.

2. Lack of robustness and accuracy because of difficulties that are sometimes associated

with the selection of a proper numerical step size.

The step size can contribute to two types of errors in the finite-differencing method:
approximation/truncation error and condition error. Truncation error is the difference
between the exact value and the calculated value of the function. Condition error is due
to computer round-off error that is associated with the subtraction of large numbers that are
nearly equal. A trial-and-error approach is usually taken to determine a suitable step size
when finite differencing is used; this approach can require many function evaluations. A
method known as the finite-difference algorithm is outlined in Ref. [11] to automatically
calculate an optimum step size. The finite-difference algorithm was extended in Ref.
[12] to tunctions that are governed by matrix equations. This algorithm has not yet been

demonstrated for cases in which the functions are calculated iteratively.



As an alternate approach that is typically less costly than finite differencing.
aerodynamic SD’s can (in principle) be computed by direct differentiation of the
governing equations that control the fluid flow. Two approaches are commonly used:
the discrete approach and the continuous approach. With the discrete approach,
differentiation (with respect to the design variables) is of the discretized flow equations:
with the continuous approach, differentiation is of the continuous governing equations
using material derivatives or generalized calculus of variations. Differentiation via the
continuous approach yields linear differential equations for the SD’s; typically these
differential sensitivity equations must be discretized and solved numerically for the
required SD’s. The discrete and continuous methods can yield identical SD’s if the
goveming equations are self-adjoint (which is not the case for the Euler and Navier-
Stokes equations) and if the discretization that is selected is the same for both methods:
otherwise, the SD’s obtained via the continuous method may not be consistent with the
discrete function solutions. However, the advantage of using the continuous formulation
is that of flexibility; (i.e.. the governing equations and the discretization used for the SA
can be different from that used for the flow analysis). An excellent review article by
Taylor et al. [13] provides an overview of research activities in the efficient and accurate

calculation of SD’s with advanced CFD codes.

Early works by Pironneau [14] used the continuous formulation applied to the Navier-
Stokes equations to derive sensitivity equations for incompressible low-Reynolds-number
flow. Angrand [15] used a similar approach for flow over an airfoil using the irrotational
flow (potential flow) approximation. Yates [16] and Yates and Desmarais [17] used
a continuous formulation applied to the equations of linear aerodynamic theory and
successtully obtained SD’s from the integral-equation formulation of these governing
equations in two dimensions. Extension of this method to three~dimensional (3-D)
flow with the Navier-Stokes equations (for flow analysis and to calculate aerodynamic

sensitivity derivatives) is possible, in principle. The integral-equation representation of



the governing equations has advantages over conventional finite-difference and finite-
volume methods, and these advantages carry over to the solution of the resulting

sensitivity equations.

Jameson [18, 19] and Jameson and Reuther [20] applied control theory to airfoil
and wing design. They used a continuous formulation together with the adjoint-
variable approach to obtain the required gradient information. Initially, their method
was successfully implemented with conformal mapping for potential flow: more recently,
they have extended it to inviscid flow in two and three dimensions with a finite-volume
discretization. With this method, 2 + m flow analyses are required per design cycle,
where two analyses are required to solve the flow equations and the adjoint equations
(one analysis each) and m is the number of flow analyses required in the line-search
procedure. The flow equations and the adjoint equations are solved efficiently by using

the multigrid procedure in incremental iterative form.

Frank and Shubin [21], Shubin and Frank [22] and Shubin [23] obtained aerodynamic
sensitivity equations using both the discrete and the continuous approaches. These
studies indicates that consistent, discrete SD’s should be used in aerodynamic design
optimization; failure to do so can result in a considerable slowdown or complete failure
of the optimization procedure. (Recall that the continuous method generally does not

yield consistent, discrete SD’s.)

With a continuous formulation, Borgaard and Burns [24] and Borgaard et al. [ 25]
derived aerodynamic sensitivity equations in two dimensions by directly differentiating
the Euler equations and the accompanying boundary conditions. Existing CFD software
was easily modified to obtain the SD’s with this approach. With this method, the nonlinear
flow equations and linear flow-sensitivity equations were solved with the same solution
procedure. However. in contrast to Frank and Shubin [21], Borgaard et al. concluded
that judicious use of inconsistent, discrete SD’s can sometimes result in successful

optimization for cases in which the use of the consistent, discrete SD’s sometimes fails.



With a continuous formulation, Ibrahim and Baysal [26] derived sensitivity equations
in adjoint form and boundary (transversality) equations for the quasi-one-dimensional
(quasi-1-D) Euler equations. This approach differs from other methods in that a
perturbation technique is applied with a variation formulation to find the required gradient
information. The resulting adjoint sensitivity equations and flow-analysis equations are
solved with the same solution procedure because the character of these equations is
similar. The method is applied to the optimization of a quasi-1-D nozzle, that includes

a normal shock within the nozzle.

Elbanna and Carlson [27] applied the discrete sensitivity approach to calculate
aerodynamic sensitivity coefficients in the transonic and supersonic flight regimes, where
the governing equations of fluid flow considered are the transonic small-disturbance
equations. Later, this approach is applied to the 3-D full-potential equation to compute
aerodynamic sensitivity coefficients for a wing in a transonic flow. In order to avoid the
excessive memory of a direct-solver approach, they used a conjugate-gradient iterative
method to solve the very large system of linear sensitivity equations that is associated
with 3-D flow. Elbanna and Carlson [28] used a symbolic manipulator, MACSYMA (8],
to differentiate various parts of the 3-D full-potential flow code and successfully obtain

these aerodynamic SD.

Baysal and Eleshaky [29], Baysal et al. [30], Burgreen et al. [31], and Eleshaky and
Baysal [32] applied the discrete sensitivity approach to the steady Euler equations and
later extended the approach to the thin-layer Navier-Stokes (TLNS) equations; results
were presented for two-dimensional (2-D) flow. Taylor et al. [33, 34] and Hou et
al. [35] also derived discrete sensitivity equations for the Euler and TLNS equations,
with results given for 2-D flow. This discrete method results in very large systems of
linear sensitivity equations that must be solved to obtain the SD’s of interest. In Refs.
27 through 39. the sensitivity equations are solved in “standard” (i.e., nonincremental)

torm. Furthermore, in these references, a direct-solver method is applied to solve these



equations; the single exception is Ref. [39], where a hybrid direct/iterative approach is

adopted for an isolated airfoil problem.

Eleshaky and Baysal [40] proposed a domain decomposition technique to solve
the discrete sensitivity equations for large 2-D and 3-D problems. This method
decomposes the large computational domain into subdomains; the sensitivity equations
for the interior cells and the sensitivity equations for boundary cells that couple
the subdomains are iteratively solved with a preconditioned conjugate gradient (CG)
technique. The feasibility of computing the SD’s on decomposed computational domains
in two dimensions was demonstrated on a sample airfoil problem by Lacasse and Baysal
[41]; in three dimensions it was demonstrated on an axisymmetric nacelle configuration

by Eleshaky and Baysal [40].

Korivi et al. [42] and Newman et al. [43] proposed the incremental iterative method
(IIM) to solve the sensitivity equation to calculate consistent, discrete SD’s. With this
approach, approximations of convenience can be introduced into the coefficient matrix
operator without affecting the accuracy of the SD. The IIM enables the same solution
strategy that 1s used to solve the equations of the flow analysis to be used to solve the
flow sensitivity equations. This IIM strategy was first implemented in two dimensions for
the TLNS equations with both the direct-differentiation and adjoint-variable approaches;
the procedure was demonstrated for two airfoil problems: low-Reynolds-number laminar
flow and high-Reynolds-number turbulent flow. In their work, the failure to differentiate
the turbulence modeling terms (because of their complexity) resulted in inaccurate discrete
SD’s. Later, the IIM strategy was implemented in a 3-D marching Euler code to obtain

SD’s for several nongeometric design variables [44].

Chattopadhya and Pagaldipti [45] obtained quasi-analytical (discrete) SD’s from the
3D parabolized Navier-Stokes equations and demonstrated the method for flow over a
delta wing. In their study, grid sensitivity terms were first calculated via finite differences:

in a later study [46]. they were computed with a quasi-analytical method. Huddleston et
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SD’s. Later, the IIM strategy was implemented in a 3-D marching Euler code to obtain

SD’s for several nongeometric design variables [44].

Chattopadhya and Pagaldipti [45] obtained quasi-analytical (discrete) SD’s from the
3D parabolized Navier-Stokes equations and demonstrated the method for flow over a
delta wing. In their study. grid sensitivity terms were first calculated via finite differences;

in a later study [46], they were computed with a quasi-analytical method. Huddleston et



al. [47] applied the IIM strategy to calculate consistent, discrete SD’s from a 2-D Euler-
solver using the Gauss-Seidel algorithm with subiterations. The example used in their
study was flow over an airfoil at subsonic and transonic flow conditions: they defined the
shape of the airfoil with a Bezier-Bernstein parameterization. In their study, they note a
discrepancy in the SD’s when the quasi-analytical results are compared with the results
obtained with finite differencing; this discrepancy is attributed to approximation of the

derivatives of Roe’s flux-difference-splitting scheme.

1.1.2 Design Optimization

Design optimization methods can be roughly classified as inverse design. gradient-
based design, and nongradient-based design. Inverse aerodynamic design is a procedure
in which typically a target surface-pressure distribution is specified, and the corresponding
shape is calculated that will best produce this pressure profile. The disadvantage to this
method is that physically realizable solutions may not exist. Thus, the inverse design
problem must be carefully formulated. A review of inverse aerodynamic design methods
is given in Ref. 48,

Nongradient-based optimization methods are based on genetic algorithms, simulated
annealing techniques, and neural networks. Gradient-based techniques can be classified as
either loosely coupled or tightly coupled optimizations. Loosely coupled optimization can
also be called the “black box” method, in which the optimization software is implemented
outside of the analysis cycles; the optimizer drives and controls the analysis and SA codes
in the optimization procedure. The user typically can use the optimization code as a black
box. in which the existing analysis and SA software are used for optimization without
modifications. In the tightly coupled optimization procedure, the optimization cycles are
embedded within (and are concurrent with) the iterations that are required in the function-
analysis procedure. Gradient information is obtained concurrently within the procedure.
The end result of the tightly coupled optimization procedure is the final improved design

at convergence of the function-evaluation code. Gradient information for the loosely



coupled and tightly coupled methods can be obtained with either the discrete or the

continuous approach.

Rizk [49] formulated a tightly coupled optimization procedure (also known as
simultaneous analysis and design optimization) and summarized several CFD applications
of this technique in Ref. 50. Ghattas and Xiaogang [51] used a discrete formulation to
obtain the required gradient information and formulated a tightly coupled optimization
procedure in an application to a low-Reynolds-number viscous flow. Hou et al. [52]
successfully demonstrated tightly coupled optimization with a discrete adjoint formulation
in application to a quasi-1-D nozzle problem. These two independent derivations of Hou
and Ghattas arrive at essentially the same formulation for simultaneous aerodynamic
analysis and design optimization; their methods are closely related to variational or control
theory techniques. Ta’asan et al. [53] and Kuruvila et al. [54] used a continuous adjoint
formulation to obtain gradient information and formulated the “one shot procedure,”
which is a tightly coupled optimization scheme in which a highly efficient multigrid
method is used to solve the potential-flow equations and the accompanying adjoint
sensitivity equation. With this method, the entire optimization procedure requires only
about two to three times the computational cost of a single flow analysis. Huffman et al.
[55] used a continuous adjoint formulation coupled with mesh sequencing to implement
a simultaneous analysis and design optimization procedure in the TRANAIR code, which
solves the full-potential equations of 3-D fluid flow. They employed a quasi-Newton-type

solver to efficiently solve the flow analysis and adjoint sensitivity equations.

Other studies have recently been documented that present results for the loosely
coupled aerodynamic optimization of wings using the 3-D Euler equations together
with SD’s calculated with either the discrete direct or discrete adjoint method. These
studies were for transonic flow: therefore, they required a general 3-D flow solver
(and appropriate computational grid) capable of solving mixed subsonic, transonic, and

supersonic flows. For 3-D inviscid flow over a wing, Burgreen [56] and Burgreen and



Baysal [57. 58] considered both wing-section and planform design variables in their
aerodynamic shape-optimization study. Jameson [59] considered wing-section variables
only (for a fixed planform) and implemented an optimization technique based on control
theory. Chattopadhya and Pagaldipti [45] developed a multidisciplinary, multilevel
decomposition procedure for the optimal design of a high-speed transport wing with

the parabolized Navier-Stokes equations and quasi-analytical aerodynamic SD.

Korivi et al. ([60] and the present study) use consistent, discrete SD’s obtained by
the direct-differentiation approach via the IIM with a space-marching algorithm for the
Euler equations. Design-improvement studies are accomplished by using grid sensitivities
from an automatically differentiated grid-generation code. The HSCT 24E configuration is
chosen as the test case for the design-improvement studies in which only fully supersonic

flow is considered.

1.2 Scope and Objective of the Present Study

The central focus of this study is to develop and demonstrate a methodology to
efficiently calculate discrete (quasi-analytical) gradient information from advanced CFD
codes. The IIM is proposed and successfully demonstrated in two dimensions to calculate
these SD’s. After successful demonstration in two dimensions, this methodology is
extended to a 3-D marching Euler flow code to accurately and efficiently calculate
geometric and non geometric SD’s. Finally, a 3-D feasibility study (with the geometric
SD) is done for the aerodynamic design improvement of the HSCT 24E configuration.

Fundamental sensitivity equations are derived by direct differentiation of the system
of discrete nonlinear algebraic equations that model either the Euler or TLNS equations for
2-D and 3-D steady flows. This differentiation results in large systems of linear algebraic
sensitivity equations that must be solved to obtain the derivatives of interest. Solving these
sensitivity equations in standard form (i.e., nonincremental form) with a direct-solver

approach is an option that has been investigated for some applications. Some important
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advantages are realized in using a direct method when feasible. The lower/upper (LU)
factorization of the coefficient matrix is stored in computer memory, and for multiple
right-hand sides of the equation (corresponding to different design variables or different
adjoint variables) the linear sensitivity equations can then be efficiently solved by
the simple forward and backward substitution procedure. However, the most serious
disadvantage of a direct method is the extremely large computer storage requirement,
which appears to be well beyond the current capacity of modem supercomputers for
practical 3-D problems; this capacity can even be exceeded in two dimensions on

computational grids that contain a large number of points.

In an effort to circumvent the computer storage limitation for the direct methods. this
study focuses on fundamental algorithm development for the efficient iterative solution
of the aerodynamic sensitivity equations. The objective is to develop a solid framework
in two dimensions from which extensions to three dimensions are proven feasible. In
general, a serious difficulty encountered in the development and application of iterative
techniques is the lack of diagonal dominance or poor overall conditioning in the coefficient
matrix. Unfortunately, this problem is a very common occurrence in the CFD coefficient
matrices of interest; the severity varies greatly and depends on many factors. This
problem can manifest itself in either poor performance or even complete failure (i.e.,

divergence) of an iterative algorithm.

An “incremental” iterative method (also commonly known as the “delta” or “cor-
rection” form) is proposed in the present study to iteratively solve the aerodynamic
sensitivity equations. This method has a computationally useful property that can be
effectively exploited to combat the problems of poor iterative algorithm performance.
This usetful property allows the introduction of “approximations of convenience” into the
coefficient-matrix operator of the equations without affecting the accuracy of the SD’s at
convergence. These approximations must be “reasonable” so that the resulting iterative

strategy is convergent. In contrast. if approximations are made to the coefficient-matrix
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operator of the equations in the standard form., then the computed SD cannot be consistent
discrete forms; that is, they will not be the correct derivatives of the nonlinear algebraic
equations that model the steady-state flow. In particular, it is proposed and successfully
demonstrated numerically herein that the identical, diagonally dominant, approximate
coetficient-matrix operator and algorithm, commonly associated with implicit methods for
solving the nonlinear flow equations, can also be used to iteratively solve (in incremental

form) the consistent, discrete systems of linear equations for aecrodynamic SA.

The truly significant practical benefits of the proposed IIM can be realized only if
the method can be successfully extended for use in three dimensions; this extension
is demonstrated herein with the 3-D Euler equations. In particular, a space-marching
algorithm together with the IIM is developed to calculate SD’s in three dimensions; this

method is applicable to fully supersonic, inviscid flow.

Another major part of this study focuses on the feasibility of applying the aerodynamic
SD’s to aerodynamic design optimization procedures in three dimensions; the HSCT 24E
filleted-wing-body configuration (without nacelles and horizontal fins) is considered in
this demonstration. A surface/volume-grid-generation code is differentiated to obtain
the required grid-sensitivity terms, which are subsequently coupled with the SA code.
The resulting SD’s obtained via the IIM are compared on the basis of accuracy and
efficiency with the same SD’s obtained via finite differencing. The flow-analysis code,
the differentiated surface/volume-grid-generation code, the aerodynamic SA code, and
an optimizer code are coupled to make a complete aerodynamic design package. This
design package is applied in three dimensions for thickness, camber, and planform design-

improvement studies of the HSCT 24E configuration at supersonic cruise conditions.

The development of computer codes to conduct this study is summarized as follows.
A 2-D Navier-Stokes computer code is developed with the capability to compute SD
for geometric and nongeometric design variables via the [IM: this includes both the

direct-differentiation and the adjoint-variable formulations. In particular, for accurate



and efficient applications to airfoil problems, the computer code is developed with
a “lift-corrected” far-field boundary condition [61] for flow analysis and SA. A 3-D
space-marching Euler code, MARSEN (marching Euler sensitivities). is developed for
aerodynamic flow analysis, and the capability is developed for this code to compute
SD’s for geometric and nongeometric design variables using the IIM with the direct-

differentiation approach.

1.3 Thesis QOutline

This document is organized as follows. In Chap. 1, the introduction, literature review.
and motivation have been presented. A brief review of the governing equations and
method of solution is given in Chap. 2 for the 2-D Navier-Stokes equations, and necessary
modifications are given for the space-marching algorithm applied to the Euler equations
in three dimensions. The standard sensitivity equations with the direct differentiation
and adjoint-variable approaches are given in Sec 3.1 and the IIM strategy is given in
Sec. 3.2; the incremental iterative forms of these standard sensitivity equations are given
in Sec. 3.3; a discussion with regard to the grid sensitivity is given in Sec. 3.4. The
IIM methodology is extended to the space-marching Euler algorithm in three dimensions
in Sec. 3.5. The SD’s in two dimensions for a subsonic laminar case and a transonic
turbulent case are given in Secs. 4.1 and 4.2, respectively. Similarly, the SD’s in three
dimensions for geometric and nongeometric design variables are given in Sec. 4.3. In
Chap. 5, sample results are given from a feasibility study for design improvement of
the HSCT 24E wing; SD’s with respect to geometric design variables, coupled with an
automatically-differentiated surface/volume-grid-generation code and an optimizer code
are used. The summary, conclusions, and suggestions for further research are given in
Chap. 6. The governing equations in curvilinear coordinates for the 2-D Navier-Stokes
equations and for the 3-D Euler equations are given in Appendix A. The procedures for

the linearization of a lift-corrected far-field boundary condition are given in Appendix B.
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The adjoint-variable formulation in IIM form for inviscid flow with the space-marching
algorithm is given in Appendix C. The parameterization of the HSCT 24E wing is given

in Appendix D. Finally, a brief review of the automatic differentiation tool ADIFOR is

given in Appendix E.
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Chapter 2

GOVERNING EQUATIONS AND METHOD OF SOLUTION

In the present study, the goveming equations for compressible, unsteady, inviscid
flows in three dimensions and viscous flows in two dimensions are solved. These solutions
are summarized in Appendix A. These equations are solved in the present study in their
integral conservation-law form with a cell-centered finite-volume formulation [62, 63].
In this section, the procedure adopted to solve the 3-D Euler equations is outlined, and
necessary modifications are suggested to handle the 2-D TLNS equations and 3-D space
marching algorithm. The discretization of Eq. (A.1) in space and the application of the

Euler implicit time discretization yields the following:

_l_ n — n+1
[mt]{ AQ} = {R™!} .1)
Linearization of Eq. (2.1) about the n® time level yields
1 JOR™ n _ fon
|5z - |35 o= ey 2.22)

{nAQ} — {QI\-H} _ {Qn}
n=1,23.. (2.2b)

In Eq. (2.2). [ﬁ} is a diagonal matrix, and [%}g] 1s a large, banded, sparse matrix. In
this study, this Jacobian matrix plays another central role in the SA as discussed later.
As the time step approaches infinity, Eq. (2.2) simply becomes the Newton-Raphson

method for solving the nonlinear set of equations. Because we are interested only in



steady-state flow, the right-hand side of Eq. (2.2a) governs the physics of the fluid flow
and the left-hand side is the matrix operator that govems the rate of convergence of the
iterative procedure. The solution Q" is the vector of field variables that corresponds to
the residual at zero (i.e., the steady state). The residual R(Q) includes the flux balances

across each cell in the computational domain.

R(Q) = 6F¢(Q) + 6G»(Q) + 61,(Q) (2.3)

R o [5(Penq) + o %ong) » of PR
[%JAQ_ [6<6QAQ>+6<8Q"AQ)+5(8Q AQ)J (2.4)

o~ —~

where F ¢:Gp,and He are the inviscid flux terms in the &, n, and ( curvilinear coordinate

and

directions. The inviscid fluxes are calculated with the Van Leer upwind flux-vector-
splitting method. Van Leer’s flux vector splitting is chosen over other methods because
with this method the fluxes are continuously differentiable at sonic and stagnation points;
this feature is vital in the present study. Details of this method are given in Ref. 64.

The terms 6?5(Q) in Eq. (2.3) and 6{%AQJ in Eq. (2.4) are evaluated as

6Fe(Q) = 6F(Q7) + 6+F; (Q7)

oFs ] _[9FHQ") 9F¢ (QF)
6[EAQJ =6 (—aQ—AQ +6% TAQ (2.5)

where 6~ and 8% are backward and forward difference operators respectively. These
fluxes are split into positive and negative parts based on the eigenvalues of the Jacobian
matrices of the respective fluxes. Conserved variables Q are extrapolated from cell
centers to cell faces in evaluating fluxes at cell interfaces based on the monotone
upstream-centered schemes for conservative laws (MUSCL). The extrapolation procedure

is accomplished with ¢ — & interpolating polynomials given as
_ 1
172 = Qi+ 786[(1 = we) e +(1+ k) Ag] Q;

1
fae = Qi = 79 [(1 = ke) Ve +(1+ 5e) A Qi (2.6)
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where

DeQi= Qi1 —Qi, veQi=Q - Qi (2.7)
The value of ¢ determines whether extrapolation is first order (¢ = 0) or higher order (¢
= 1). Spatial accuracy is determined by the value of «, where x = —1 is second-order-
accurate fully upwind, x = 1/3 is third-order-accurate upwind biased (less than third
accurate for multidimensional computations), and « = 1 is equivalent to a second-order
accurate central difference scheme. The subscript ¢ denotes the direction in which the
extrapolation is done. Similarly, expressions for (A},, and IA{C are obtained by replacing
i with j and &, respectively. With Egs. (2.3) and (2.4), Eq. (2.2) can be written for a

particular ijk* interior cell as

I
+DeAQ ik FAAQYL  x + CeAQi1 5k + EcAQY,
D, 0Q0 2 kAR AQY _  + CrlQ11x + EpAQY 10k
D AQ k-2t ACAQ 1 + CeAQY oyt + ECAQR 14

= Rijk( Q0 Qi j i Q10 Qi njio Az Qo

Qli-1h0 Qjrio iz to A—2s Wiiem 1 QP ser1> QP ea2) (2.8)

where Ag, Be, C¢, D¢, and E¢ are 5x5 block matrices in the ¢ direction and similarly
for the n and ¢ directions. Equation (2.8) shows the left-hand side of the equation as
a “thirteen point molecule” in a linear sense and the right-hand side of the equation
represents the same molecule in a nonlinear sense. In two dimensions the block matrices
are 4 x4, and the block matrices A,, By, C;, Dy, and E, are zero. Additional contributions
to the block matrices and residual expression are made to account for the viscous
terms, when applicable. The finite-volume equivalent of second-order-accurate central
differences is used for the viscous terms. Details are given in Ref. 65. In two dimensions

Eq. (2.8) can be written for a general ik interior cell as
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Adjustments have to be made to Eq. (2.8) in three dimensions and Eq. (2.9) in two
dimensions near the boundaries. Furthermore, in the present study, all boundary
condition relationships are consistently linearized (except lift-corrected far-field boundary
conditions) and pre-eliminated in the global Jacobian matrix [%J. References 39 and 65
provide more details regarding the linearization of boundary conditions. Inclusion of the
linearization of the boundary conditions (discussed in Chap. 3) is of utmost 1mportance
in the present study. The structure of the global Jacobian matrix may change, depending
on the type of boundary condition. For example, the implicit treatment of the periodic
type of boundary condition results in off-diagonal terms inside or outside of the main
bandwidth, depending on the ordering of the cells. Another example is the implicit
treatment of the lift-corrected far-field boundary conditions [39], which couples the flow
variables at the far field boundary with the flow variables on and adjacent to the surface
boundary of the airfoil, and thus destroys the bandedness of the Jacobian matrix.
Equation (2.2) can be repeatedly solved with a direct solver (a Gaussian elimination
solver) as the solution is advanced in time to steady state. Because of memory limitations,
this method is not feasible for large 2-D and 3-D problems. The computational effort
is reduced if first-order implicit discretization is used for the left-hand side of Eq. (2.2);
this treatment does not affect the computational accuracy of the steady-state solution,
which is determined by the spatial differencing of R(Q). Note that a first-order implicit

discretization makes the left-hand-side Jacobian matrix of Eq. (2.2) block diagonally

——

dominant and is represented by the approximate operator [g—%J. Typically, the differences



between the true Newton coefficient operator and the approximate coefficient-matrix

operator include

(D)

(2)

(3)

A “time-step” term is added, which significantly enhances each diagonal element
of the coefficient matrix [%@] This addition is equivalent to the inclusion of
underrelaxation in the true Newton’s method and under certain restrictions can make

the iterative procedure of Eq. (2.2) “time accurate”.

Simplifying linearization errors of various types are included in the construction
of the approximate operator [%}‘ﬁl} For example, consistent boundary-condition
linearization is typically neglected, or a first-order accurate upwind treatment of the
inviscid terms may be used in this matrix operator despite the higher order accurate

treatment of these terms in the vector R*(Q) on the right-hand side of the equations.

Additional “approximations of convenience” are included in the matrix operator
in order that an efficient (in terms of computational work and computer storage)
approximate solution of the linear problem can be generated at each iteration on
the nonlinear problem. For example, with the popular, spatially split, approximate-
factorization method of Ref. 66, an approximate solution of Eq. (2.2) is produced
at each n iteration with alternating direction sweeps that involve the solution of a
series of uncoupled sub-systems of block-tridiagonal linear equations in each sweep
direction. This algorithm is used in the sample problems for this study. Additional
well-known iterative algorithms that have been applied to the solution of the Navier-
Stokes equations include LU approximate factorization [67], conventional relaxation
methods [68], strongly implicit methods [69], and preconditioned conjugate-gradient

methods [70, 71].

InEq. (2.8), D¢, E¢, Dy, E;, D¢, and E¢ are zero for the first-order implicit discretiza-

tion. In three dimensions, supersonic flow is solved in a space-marching manner; this

involves locally iterating in each crossflow plane, solving a local nonlinear problem,
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before proceeding to the next cross plane. In tully supersonic flow, there is no
upstream dependence on the downstream behavior. Equation (2.8) can be written for fully

supersonic flow with first-order upwind discretization for the left-hand side as follows:

[
+ARAQ y x + CrAQY 41k + AcAQ o + CeAQY ka
= Rijk(Ql 1o Q20 Q110 Qf—a ke

Li-1o Qi1 Qjszio Qfjke2s Qi ko1s QM ke Q5 kt2) (2.10)

In Eq. (2.10), the coefficient of AQ;,,, Ce, is zero for fully supersonic flow. Space
marching is done in the direction of the flow (i.e., the i direction in the present study).
Information in the previous cross plane is known when iterating locally in the i** cross-
flow plane [72] (i.e., Q_,and Q}_, are the steady-state flow variables in the i-/ and i-2
cross planes respectively). For this reason, the term AQi_1 ;x is zero and not included
in Equation (2.10) for the present space-marching algorithm. Equation (2.10) can be

expressed as
[M + B, + BC]AQ{‘,J-,k
HARAQN 1k + Co QT 1 a + ACAQY g + CeAQY, 14
= Ri,j,k(QiI:j,ka Q;_z,j,k, Q;—l,j,ka Qin,j_z,k,

Qi-100 Qi AWjrzio M2 Qe Wit O ga) .11

where

I
M= [m-}-B{l

Equation (2.11) is approximately factored as
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[(M+ By)AQH ik + ApAQN_  + CrAQl 41 k) (M7
[(M+Bc)AQY « + AcAQH ko) + CcAQP 141
= Rijk(Qj 0 Q-2 Q10 Qj—2.00

Q100 Qi1 0 Az Ajk—20 Al k1> Qi ks 10 Qs i) (2.12)
i

The solution of Eq. (2.12) involves the solution of two block-tridiagonal equations. The

receding equation can be written compactly for the it crossplane as
p g eq pactly P

[(M + Byp), Ay, Cy];@: = R{(Q])
[(M+Bg¢),Ar, Cc],"AQs = M; ®;

"AQ=QM -Q" n=1,2,3 (2.13)

where ®; is the intermediate solution for the i crossplane. The flow variables are solved

and updated at each iteration as shown in Eq. (2.13).



Chapter 3

DISCRETE SENSITIVITY ANALYSIS

In Sec. 3.1 of this chapter, fundamental sensitivity equations are derived for two di-
mensions in standard form with the direct-differentiation and adjoint-variable approaches.
In Sec. 3.2, the incremental method for solving the linear system of equations is discussed.
Later, in Sec. 3.3, the standard sensitivity equations are cast in incremental iterative form
in two dimensions. Various methods for calculating mesh sensitvity are discussed in Sec.
3.4. In Sec. 3.5, the IIM is extended to solve the sensitivity equations in three dimensions
with a space-marching procedure for supersonic Euler flow with the direct-differentiation

approach.

3.1 Fundamental Aerodynamic Sensitivity Equations in Standard Form

In general, the j* aerodynamic system response C; is functionally dependent on

the vector of steady-state field variables {Q*}, the vector of the computational grid

(x,y) coordinates, {X}, and perhaps also explicitly on the vector of independent design
variables 3. That is,

Cj = C;(Q(8),X(B), ) | 3.

The SD of C; with respect to the kth design variable 3y (i.e.. the k! element of B) is, thus,

dg {BCj}T{dQ*} X {ac_j}T{ dX } L 96 )

d Bk 0Q d gy X d gy oy )

where the superscript T denotes transpose.

The notation for a total derivative has been used on the left-hand side of Eq. (3.2)

which indicates that the total rate of change of C; with respect to 3y is included in the



term and distinguishes it from the partial derivative on the right-hand side of the equation.
Nevertheless, g—% is a partial derivative in the sense that C; is generally a function of
multiple independent design variables 4, as seen in Eq. (3.1). In Eq. (3.2), the term
{é%x;} is known as the grid-sensitivity vector; a detailed discussion is given in Sec. 3.4.
The grid-sensitivity vector is null if the design variable Sy is not related to the geometric
shape of the domain. The vector {%%k—} which is the sensitivity of the steady-state
field variables with respect to the ¥ design variable, is evaluated for use in Eq. (3.2) by
solving a large system of coupled linear sensitivity equations.

The large system of coupled nonlinear algebraic residual equations that model the

fluid flow can be generally expressed as

where the dependence of these equations on the grid {X} and on the design variables
B is noted. In addition, Eq. (3.3) includes the possibility of an explicit dependence on
the steady-state lift coefficient Cr. This explicit dependence is found in the far-field
boundary conditions of an isolated lifting airfoil when the accurate, “lift-corrected” far-
field boundary conditions of Ref. [61] have been used, as in the 2-D sample problems
of this study. Note that Cy itself depends on the field variables {Q*}, the grid {X},
and possibly explicitly on the design variables 4, in the manner expressed by Eq. (3.1).
The explicit dependence on Cp noted in Eq. (3.3) might, therefore, appear redu.ndant;
however, the computational advantages of this particular grouping of terms is discussed

in detail in Ref. [39] and will become apparent subsequently.

Differentiation of Eq. (3.3) with respect to Sy yields

dR _ [oR][dQ* OR] [ dX OR R\ dCy _
{M} h [%} { d Bk } * ’:d)—(} {(Iﬁk} t {()ﬁk} + {OCL} dg, {0} (3.4)

where in Eq. (3.4) the term % is evaluated with a relationship of the form given by

Eq. (3.2). Note that the vector {%} is very sparse; nonzero contributions to it arise

only from the “lift-corrected” far-field boundary-condition equations. Equation (3.4) is,



thus, a large system of coupled linear equations that can in principle be solved for the
unknown vector {%}; one such solution is obtained for each design variable Bx. This

method is known as the quasi-analytical method for computing SD’s.

The matrix [3—3} of Eq. (3.4) is the Jacobian of the nonlinear flow equations

(evaluated at steady state) with respect to the field variables and includes consistent
treatment of all boundary conditions; an exception is the contribution that results from the
explicit dependence of the lift-corrected far-field boundary conditions on Cy . Substitution
of Eq. (3.2) for %%kh into Eq. (3.4) reveals that this contribution to [g%J is given by the
Very sparse matrix {%} {%}T. The matrix [g)%} of Eq. (3.4) is the Jacobian of the
flow equations (evaluated at the steady state and including all boundary conditions) with
respect to the grid coordinates [33-37]; again, the exception is the contribution from the
explicit dependence of the far-field boundary conditions on C. Here, this contribution is
given by the very sparse matrix { %} {%}T. The vector { 6%%} of Eq. (3.4) accounts
for explicit dependencies (if any) of the flow equations (including boundary conditions)
on fy; the contribution to this vector from the Cp dependence of the far-field boundary

conditions is given by the vector { 28 L 9CL More details in regard to the inclusion of
g Yy dCy | 9Pk g

lift-corrected far-field boundary conditions are given in Appendix B.

The Jacobian matrix |28 | must include consistent linearization of bound condi-
aQ ary

tions. This inclusion can be done with or without pre-elimination, the details of which are
given in Ref. [35]. With pre-elimination, one expresses the boundary unknowns in terms
of the interi(')r unknowns, whereas without pre-elimination one solves the interior and
boundary unknowns simultaneously. Inclusion of the linearization of boundary conditions
in the Jacobian matrix is very important to obtaining accurate SD’s as noted by Hou et

al.  [35].

A well-known, closely related alternate strategy for computing SD’s known as the

adjoint -variable method. is easily developed with expressions that have been presented



thus far. The development begins by combining Egs. (3.2) and (3.4) to yield
dc;  faci\ T rdqQr g Trax L 96
dgy, | 0Q d gy X d Sk loJe)"

i <[5QJ{d§k}+[ J{%}+{g;}+{aaé}i;i> o)

The adjoint-variable vector {A;} is arbitrary at this point because the inner product of

{Aj} is taken with the null vector, from Eq. (3.4). Thus, no net change occurs from Eq.
(3.2) to Eq. (3.5) because the entire additional term on the right-hand side of Eq. (3.5)

1s zero for any and all {);}. Expansion and rearrangement of Eq. (3.5) yields
- () - or[R){B) e wr(e)
dﬁk ({ 0X +{u} ) dfy * 9B, 3By {4 00k
dC aC; d
oz ()~ w]) (i) e

The necessity of evaluating the vector {%} with Eq. (3.4) is eliminated for all 8y by

selecting the vector {A;} such that the coefficient of {%%k—} in Eq. (3.6) is null. That

is, select {};} so that it satisfies

{aa—%}T-i' {AJ}T[S—SJ = {0}7 3.7)
‘” orEo w

Therefore, Eq. (3.8) is solved for this particular choice of the adjoint-variable vector { A}

the SD’s of C; with respect to all 8y are computed by

- ()[R J){§§}+§§k
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Note that Eq. (3.9) can be solved for j—g‘f only if 3—%(- is known or if Cj = CL. Therefore.
when the lift-corrected far-field boundary conditions are treated in the manner described.,
then ?TS,JZ‘ must be the first SD that is calculated (for any and all B of concern), regardless
of whether the sensitivity of Cp is of actual interest. (Typically, of course. the SD’s of
CoL will be of interest in most problems.) A particular solution {Aj} is valid only for

a specific system response C;; thus, the solution of Eq. (3.8) must be repeated for each

different system response of interest.

We can easily verify from the preceding equations that each solution {%} of
Eq. (3.4) for a particular design variable can be used for an unlimited number of different
system responses. In contrast, however, each solution {}j} of Eq. (3.8) for a particular
system response can be used for an unlimited number of different design variables.
Therefore, the total number of large linear systems that must be solved for a particular
problem can be minimized through a judicious selection of one of these two methods,
depending on whether the number of system responses of interest or the number of

design variables of interest is larger.

In terms of computational efficiency, the significance of the difference in the two
methods is diminished greatly if a direct method is used to solve these linear systems (i.e.,
either Eq. (3.4) or (3.8)). The difference is diminished because with either method the
LU factorization must only be done once and is then repeatedly reused for multiple right-
hand-side vectors. However, this distinction can become very important if an iterative
strategy 1s used to solve these linear systems, particularly if the difference between the
number of design variables and the number of system responses of interest is very large.
Despite this difference, these two methods are equivalent in the sense that they yield

identical values for the SD, if properly implemented computationally.

To briefly summarize, the calculation of the aerodynamic SD’s with both the discrete
direct differentiation and adjoint methods requires the direct or iterative solution of large

linear systems of equations of the type given by either Eq. (3.4) or (3.8). These two



systems of linear equations are referred to as the “aerodynamic sensitivity equations in

standard form.” Fundamental algorithm development for the solution of one of these

two linear systems is easily extended and applied to the other because their respective
: : IR or]T

coefficient matrices [B—QJ and [55] are transposes of each other. When the standard-

form equations are solved, no approximations can be introduced into any of the terms

without simultaneously introducing error into the resulting SD’s. In this form, the

framework to support the development of iterative methods is thus rigid and restrictive.

As a consequence, given the choice of a higher order accurate upwind approximation
for the spatial discretization of the flow analysis, a consistent, higher order accurate,
upwind spatial discretization, including a fully consistent treatment of all boundary
conditions, is required in the coefficient-matrix operator of the sensitivity equations
(in standard form). Furthermore, no “time term” can be added here to enhance each
element of the diagonal, as is used (in contrast) in the implicit formulation for solving
the nonlinear flow equations. Unfortunately, the resulting coefficient matrix (either [g—%}
or [gg} T) of the linear sensitivity equations in standard form in this case is not block-
diagonally dominant [68]; consequently, the computational performance of traditional
iterative methods for solving these equations in this standard form is expected to be
poor or even to fail [39]. Therefore, this particular difficulty (i.e., the lack of sufficient

diagonal dominance) and its resolution are of principal concern in the development of

the incremental form of the equations in the following sections.

3.2 Basic Linear Equation Solution in Incremental Form

Consider the linear system of algebraic equations in the general form
[A{Z"} + {B} = {0} (3.10)

where {Z*} is the solution vector. In treating the problem of solving Eq. (3.10), which

is essentially a “root finding” problem, the application of Newton’s method (traditionally



used in root finding for nonlinear equations) to the linear problem yields the basic two-step

incremental iterative formulation

~[A{™AZ} = [A{Z™} + {B) (3.11)
{zm+1) = {z™) + (" Az

m=1,23,... (3.12)

where m is an iteration index and {™AZ} is the incremental change in the solution from
the known (m™) to the next (m”+1 ) iteration level. An initial guess {Z1 } is required to
begin the procedure, which in the present study is taken everywhere as zero. If Newton’s
method is applied strictly, the coefficient matrix [X] is equal to the matrix [A], and clearly
the two-step iterative strategy of Egs. (3.11) and (3.12) for the linear problem converges
on the first iteration for any initial guess. Therefore, in this case the solution of the
linear system in the standard form (Eq. (3.10)) and the solution in the incremental form

(Egs. (3.11) and (3.12)) are equivalent.

—

More generally, however, the matrix [A] is not necessarily equal to the matrix [A].

—

The matrix [A] can be any convenient approximation of the matrix [A] with the restriction
that m must approximate [A] well enough so that the two-step iterative procedure
(Egs. (3.11) and (3.12)) converges (or at the very least can be forced to converge by
including a strategy such as underrelaxation). Simply stated, [73:] should capture the
essence of [A]. Furthermore, because the equations have been cast in delta form, the
incremental method produces the unique solution of Eq. (3.10), {Z"}, if convergent. In
this formulation, the purpose of the left-hand-side operator is to drive the right-hand-side
vector to zero; the accuracy of the unknown {Z") depends on the right-hand side and
any approximations to the right-hand side result in erroneous final results.

Equation (3.11) can be solved with either a direct solver or an iterative solver.

With the direct solver, the left-hand-side operator of Eq. (3.11) is LU factorized and



stored. This LU factored matrix is reused for multiple right-hand sides with forward
and backward substitutions for multiple iterations. For large problems in two and
three dimensions, iterative algorithms are the only choice because of the restrictions
on computer memory. If an iterative algorithm with inner iterations is introduced for
solving Eq. (3.11) then the the iteration cycle over Egs. (3.11) and (3.12) becomes
the outer iteration index. The inner iterative procedure convergence is ensured if the
left-hand-side matrix approximation is block-diagonally dominant. The outer iterative
procedure convergence is ensured, as discussed previously, if the approximate operator
is an adequate approximation to the matrix [A] and, when inner iterations are included.
if the inner iterative procedure is converged to some satisfactory tolerance (whatever that
tolerance may be).

For example, for selection of a conventional relaxation algorithm to solve Eq. (3.11),

the matrix —[A~] is split into two parts as
-[K] = [M] + [N] (3.13)
The IIM becomes

Step 1: [M]{m’iAZ} = [A[{Z™} + {B} — [N]{""HAZ}S
i=1,2,3,. .. (imax)™
Step 2: {Zm'H} ={Z™} + {m’(im“)mAZ}

m=1,23,... (3.14)

where (imax)™ is the number of inner or subiterations to converge the m™ linear
subproblem at step 1 to some desired tolerance. The splitting of the matrix as in Eq. (3.13)
is chosen such that Eq. (3.14) can be repeatedly solved efficiently in terms of CPU time
and memory requirement. Popular choices for splitting the matrix yield either the Jacobi

or the Gauss-Siedel algorithms of either the point or line-relaxation types. More details



are given in Ref. [65] in which the delta-form line Gauss-Siedel algorithm with inner

and outer iterations is chosen to solve the nonlinear 2-D fluid equations.

(1)

(2)

(3)

4)

Advantages of using the IIM can be summarized as follows:

Iterative algorithms can be used to solve the sensitivity equations in incremental
terative form efficiently. In contrast, for solution of the standard form of these
equations, iterative algorithms may converge very slowly or even may result in
complete failure; this is because of the lack of block-diagonal dominance in the
higher order Jacobian matrix.

The same approximate operator available for solving the flow equations in most
implicit CFD codes can also be used to solve the sensitivity equation; thus a time
term that acts as an under relaxation parameter can be added to the approximate
operator in incremental iterative form.

Solution of the sensitivity equation via the IIM requires less computer memory than
solution of the sensitivity equation in standard form with in-core banded solvers.
This reduction in memory enables solution of large 2-D and 3-D problems.

Tools like ADIFOR can be used to compute the right-hand side of the sensitivity
equation efficiently and accurately even when complicated turbulence models are

being used.

3.3 Incremental Solution of the Equations of Aerodynamic Sensitivity Analysis

Application of the fundamental incremental formulation for solution of the linear

equation (Egs. (3.11) and (3.12)) to the linear system of Eq. (3.4) (i.e., the quasi-analytical

method) for computing aerodynamic SD’s gives

OR] fnpdQ) _ [dR™
“[%J{ 5T ) ‘{dﬂk} G19
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m=1,23,... (3.16)

where
(5} 5} () ()
dﬁk aQ d gy X Jo) 00y 0Cy J dpy

d

d
dcp 8CL} {de} {CL T{dX} aCL
A _{8Q a6 J VoK S 35S T 55, G17

——

where the left-hand-side coefficient-matrix operator [%} approximates the matrix {%J

(which will be discussed subsequently). The vector { a8 } represents the m™ iteration
on the total derivative of the discrete steady-state nonlinear flow equations (Eq. (3.3)),
with respect to fx. From Eq. (3.4), clearly this vector must be driven to zero to find the
solution {%%T} of Eq. (3.4), which, is of course, the objective of the incremental strategy
of Egs. (3.15), (3.16), and (3.17). 'Approximations must not be made to any terms of
the vector {%}; in particular, a consistent treatment of all boundary conditions is
necessary if the converged solution is to yield the correct, consistent, discrete SD’s. The
final solution at convergence depends only on the terms of this right-hand-side vector.
The identical approximate left-hand-side coefficient-matrix operator [%J and algo-
rithm, which are used to solve the nonlinear problem for the flow variables, are also
proposed for use (when evaluated at the steady state) as the approximate left-hand-side
operator and algorithm that are used in solving the linear equation (Eq. (3.15)) for the
flow sensitivities. That is, a first-order-accurate upwind spatial discretization of the
inviscid terms is used in this operator as an approximation here to the higher order
accurate, upwind discretization of these terms. Note that as a result of this choice. block-
diagonal dominance is obtained and maintained in the left-hand side coefficient matrix.

In addition, a false “time term” is included (i.e., added) so that each diagonal element



of the matrix [%} is further enhanced: this additional term is equivalent to under-
relaxation in the incremental strategy shown in Egs. (3.15), (3.16), and (3.17). The
boundary conditions are not linearized in a fully consistent manner in this approximate
matrix operator; far off-diagonal contributions from the periodic boundary conditions
which arise when calculations are performed on a C- or O-mesh are neglected. However,
these periodic boundary conditions cause computational difficulties for the standard-form
equations which require a consistent treatment in the left-hand-side matrix operator [38].
Finally, the well-known spatially split approximate factorization algorithm [66] (also used
here to solve the nonlinear flow equations) is used to solve Eq. (3.15) (approximately) at
each m™ iteration. If the resulting block-tridiagonal coefficient matrices are stored over
the entire domain. only a single LU factorization of each coefficient matrix is required.

Hence, the coefficient matrix is reused for all iterations and all design variables. This
strategy is implemented in the large 2-D sample problems presented.
If the adjoint-variable formulation for computing the SD is preferred, then application

of the incremental formulation for solution of the linear equation (Egs. (3.11) and (3.12))

to the linear system of Eq. (3.8) for computing the adjoint-variable vector {};} yields

[l eon-[@on 5} o

Pt =0+ may)

m=1,2,3,... (3.19)

For application in Eq. (3.18), the approximate left-hand-side coefficient-matrix operator
and algorithm (described previously for use in Eq. (3.15)) can be easily transposed.
Again. only a single LU factorization of the globally stored block-tridiagonal coefficient

matrices is required.



3.4 Grid (Mesh) Sensitivity

In this section, the sensitivity of the grid or mesh with respect to the design variables is
discussed. The computational grids used in CFD usually are body-fitted grids. Movement
of the boundary because of changes in the design variables affects the entire computational
grid. This term is not zero, and. thus, it needs special consideration.

One method for computing this quantity {%} 1s to use divided differences. Each

design variable is perturbed. and a new mesh is generated; mesh sensitivity is calculated

from

dX | _ X6+ AB) = X(Bx — DB
{dﬂk} _ T (3.20)

where central differences are used and Afy is the change in the k™ component of
the design-variable vector 4. This method can be used only for those grid-generation
techniques that provide the same number of cells when the design variable is perturbed
as in the original mesh. Grid-generation equations by formulation are smooth compared
with the governing equations of fluid flow; finite differencing can provide a good
approximation. The disadvantage to using this method is its computational cost. If
hyperbolic or elliptic grid-generation techniques are adopted, this method for computing
grid sensitivity becomes expensive, particularly when these grid-generation tools are used
in an automated design environment. Moreover, sophisticated grid-generation tools are

interactive, which prohibits their use in an automated design loop.

One method for calculating grid sensitivity is to make use of an automatic-
differentiation (AD) tool to obtain grid sensitivity. Green et al. [77] applied the
automatic-differentiation tool ADIFOR to obtain the grid sensitivity from a 3-D algebraic
grid generator and successfully obtained SD’s from an AD -enhanced version of the
TLNS3D flow code for turbulent flow over an ONERA M6 wing. In the present study,
grid sensitivity in three dimensions is obtained from an automatic surface/volume-grid-

generator code [80] by using the AD tool, and the resultant grid sensitivity is successfully
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used in a gradient-based design improvement of the HSCT 24E configuration. This
method can be expensive if iterative grid-generation techniques are used.
Alternatively, a method of avoiding the evaluation of grid sensitivity and expensive
regridding in a design loop is the use of using transpiration [22]. With this method, one
R [ dX

can approximately compute {ﬁ] {Jﬂf} and avoid grid generation when the geometry

shape changes. The zero flux through the boundary is modified on the surface to a fixed
value to approximate what would have happened if the body shape had actually changed.
However, this method requires considerable care to compute accurate SD’s and model
real surfacc mass transpiration in Navier-Stokes simulations.

A computationally efficient technique is proposed in Ref. [34] that involves the chain
rule and analytical differentiation of the relationships used to distribute the mesh points
in the computational domain. Boundary coordinates X can be viewed as principal input
to the grid coordinates in the rest of the domain, and these boundary coordinates are
defined by some parametric relationship that involves the design variables. Thus, the

grid generation procedure can be represented as

(Xs(4)) (3.21)

]

X=1’

The grid-sensitivity term obtained by differentiating Eq. (3.21) with respect to the design

dX X X,
(&)= {5 62

J in Eq. (3.22) is unique to a particular grid-generation program

variable /) is

5%
dX.

where the matrix {
and needs to be constructed only once. Smith and Sadrehaghighi [73] and Sadrehaghighi
et al. [74] applied this approach and obtained the grid sensitivity for a 2-D algebraic
grid generator TBGG (twin-boundary grid generation), where the surface of the airfoil is

parameterized with an NACA four-digit representation. Burgreen [56] applied this
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approach in two and three dimensions; the boundary was represented with Bezier-
Bernstien parametenization. Recently, Jameson and Reuther [20] applied this approach
to airfoil optimization.

Another approach is to construct a set of rules by which the grid is moved after the
initial grid is generated and then to differentiate these rules to obtain the grid sensitivity.
This approach is used, for example, when the initial mesh is generated using a computer
aided design [CAD] package. Taylor et al. [39] proposed a procedure for calculating grid
sensitivity terms and for use in efficient grid regeneration. As the shape of the flow domain
continuously changes as required by any shape optimization process, the mesh points in
the domain must be properly adjusted in the design iterations to avoid the numerical errors
induced by excessive mesh distortion. The requirement of mesh regridding distinguishes
shape design optimization from other design-optimization applications. This procedure
1s used in the present 2-D study to obtain grid sensitivity. This method, which will
be presented subsequently, is based on an ‘‘elastic membrane” analogy to represent the
computational domain, with grid SD’s cglculated from a standard structural-analysis code

by using the finite-element method.

A simple method for automatic mesh regridding can be established by introducing
a set of basic displacement vectors Vy to describe the patterns by which the mesh is to
be regridded. The relationship between the original mesh X, and the regridded mesh X
can then be expressed in the form of a lincar combination of those basic displacement
vectors and their associated weighting coefficients 3y as

ndv
X=Xo+) OBV (3.23)

i=1
where the weighting coefficients are taken to be the design variables. The vector X,
represents the initial mesh, and ndv is the number of design variables which is produced
with any conventional mesh-generation code: Afy is the change in 8, which produces

the new mesh X from the initial mesh Xy. In this case, the basic displacement vector



Vi is simply equal to the required mesh sensitivity vector dx | That is, the grid SD’s
ply cq q a5, g

are calculated by differentiation of Eq. (3.23), which yields

dX -
{d—ﬂk} = {Vy} (3.24)

Note that the grid-sensitivity vectors { Vi } do not change when the design variables are
changed, provided that the domain is always regridded by using Eq. (3.23) as the shape
of the domain changes. Therefore, these grid SD’s must be calculated once and then
stored prior to the start of an aerodynamic optimization strategy; they can be reused as

often as needed for grid SA, as well as for automatic mesh regeneration.

The basic displacement vectors Vi can be in any form as long as they are cach
independent. In structural shape design optimization, the elastic displacements induced
by the boundary perturbations are commonly selected to represent the basic displacement
vectors. In this way, the movement of the mesh points is governed by linear elasticity,
which not only preserves the continuity of the mesh but also avoids any mesh overlapping.
The same practice must be applied to aerodynamic shape optimization problems, in which

an imaginary elastic medium is introduced to represent the computational domain.

More specifically, the basic displacement vectors can be generated by either the
fictitious load method [75] or the prescribed displacement method [76]. The former
method produces basic displacement vectors by applying one unit load at each node
along the boundary in the direction along which the node is allowed to move. This
concept is illustrated in Fig. 3.1 for a representative airfoil grid. The latter method,
however, produces the basic displacement vectors by imposing a nonzero displacement
(in response to a unit change in each design variable) along the varicd boundary. This
concept is illustrated in Fig. 3.2 for a representative airtoil grid. The fictitious load method
is usually applied to cases in which the location of each node on the varied boundary is
considered as a design variable, whereas the prescribed displacement method is applied

in cases in which the shape of the boundary to be designed is parameterized.
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In the following example, a NACA four-digit airfoil is used to demonstrate the
application of the prescribed displacement method for mesh regridding in an aerodynamic
shape-optimization environment. The profile of the NACA four-digit airfoil can be
precisely represented by polynomials in terms of the maximum thickness T, the maximum

camber C, and the location of maximum camber L as

f(x) + C(2Lx — x?)/L? x<L
y(x) ={ f(x)+ C(1 - 2L + 2Lx —x?) /(1 = L) x> L (3.25)

where

f(x) = £0.5T(0.2969+/% — 0.126x — 0.3516x>

+ 0.2843 x* — 0.1015x") (3.26)

and the + in the expression for f(x) indicates positive for the upper surface of the airfoil,
and negative for the lower surface.

Because the derivatives of the airfoil shape with respect to T, C, and L are continuous,
small changes in T, C, and L will induce small changes in airfoil shape. Therefore, with
the employment of a Taylor’s series expansion, such a change in the airfoil shape can be

expanded approximately into a linear function of AT, AC, and AL given as

y(%) = yo(x) + 8}g’§x)AT + dyé’é AC + ‘9ya°£ AL (3.27)
where
AT=T-T,
AC=C-C,
AL=1L - L, (3.28)

Above, T,, C,, and L, are the initial values of these three shape parameters associated

with the initial airfoil shape yo(x) and the initial grid Xo.
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The derivatives %frx—) %l and 6‘77{’51 in Eq. (3.27) represent special patterns that

control the allowable changes in the airfoil’s shape. The new mesh X can be defined in

a form given by Eq. (3.23) as
X:XO+AT-\7]+AC-\73+AL-V3 (3.29)

where AT, AC, and AL are taken to be the design variables (or, equivalently, T, C,
and L are the design variables through Eq. (3.28)). The basic displacement vectors
V1, V2, and V3 can be obtained by the prescribed displacement method as previously
discussed. These vectors are obtained numerically through implementation of a finite-
element model, with each cell in the computational mesh considered as a plane stress
quadrilateral element. A finite-element matrix equation can then be formed to solve for
each basic displacement vector (i.e., the movements of all grid points) throughout the
elastic membrane model of the domain, in response to the nonzero boundary movement
that is specified through Eq. (3.28) for a unit change (or some other conveniently scaled
change) in each design variable. The finite-element matrix equation is linear with a
symmetric and banded coefficient matrix. This equation is, therefore, solved directly by
a single LU factorization; this LU factorization is then reused for multiple solutions (i.e.,
one solution Vy for each design variable).

Equation (3.27) clearly represents a particular parameterization of the airfoil surface
that will only closely approximate the NACA four-digit parameterization (defined by Egs.
(3.25) and (3.26)) if AT, AC, and AL are small. However, if remaining exactly within
or close to the allowable shapes defined by the NACA 4-digit parameterization is not
necessary during the design, then Eq. (3.27) is a valid (but different) parameterization of
the airfoil shape, even for large AT, AC, and AL. Thus, this classic NACA four-digit

airfoil is presented only as an example.
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3.5 Algorithm for SD Calculation From a Marching Euler Code

In this section, a procedure is outlined to calculate SD’s with the direct-differentiation
approach in three dimensions. The algorithm is the same as that used to solve the
nonlinear flow equations. This procedure is implemented in the computer code MARSEN.,
which was developed for this study, and was used in a gradient-based design-improvement
study for the HSCT 24E. The procedure for calculating SD’s with the adjoint-variable
approach is given in Appendix C. Note that to solve for the adjoint vector, the marching
must be done backwards (i.e., in the exact opposite direction to that of the flow).

The procedure for calculating SD’s in three dimensions is a direct extension of the
method in two dimensions. The residual equation in the i* cross plane is differentiated
with respect to the ¥ component of the design variable vector 3 by using the implicit
tunction theorem. Although the goveming fluid equations are nonlinear in the state
variables Q”, the resulting sensitivity equations are linear in the sensitivity of the state
variables {%}. The residual in the i cross plane is written as a function of the
state variables in the i, i-/, and i-2 cross planes, the grid coordinates X, with explicit

dependence on the design variable [y:

{Ri(Q,Q1.Q12. X, 8) } = {0} (3.30)

Here, the subscripts j and k on the state variables Q" are suppressed for simplicity.
Differentiating Eq. (3.30) with respect to the design variable /3y, then the following

equation results:
()1 4 )
dB S 10Qi] | dBy 9Qi—1] | dbk 0Qi—2] | dp

i [ZI;J {j;i} + {g?,i} =1{0} (331)

In Eq. (3.31), the vectors {%} {%Qﬂ—;‘} and {d(?—ﬁ;?-} are the sensitivities of the fluid

variables with respect to the design variable §y in the i, i — I, and i — 2 cross planes. The
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important point here is that upwind interpolation of the cell-centered values Q! to the
cell faces for evaluation of inviscid fluxes involves state variables in only the i — 7 and i
— 2 cross planes because of the nature of inviscid, supersonic flow. The matrices [%T] .
[ aaq?;,] and [ 50, } that are the same Jacobian matrices that are discussed in the implicit

formulation. The Jacobian matrix [%J is sparse and banded. This Jacobian matrix is

6R] {OM

computed as [W aXJ’ where M represents the metric terms and X represents the

grid coordinates. Differentiation of the residual expression with respect to metric terms
is straightforward and is not discussed here. The vector {%‘t} accounts for explicit
dependencies, if any, of the residual vector R on the design variable fy. Equation (3.31)

can be written in standard form as
-l {5} =laas] { o) + s {5
Qi| L dBc |~ [0Qi_; d By 0Qi—2 d By

EEREY
5% |\ 36 | T\ 95, (3-32)

The sensitivities of the state variables in the i — / and i — 2 cross planes

({dfgzl }, {dfﬁgj }) are known when sensitivities of the state variables in the

cross plane are solved with a space-marching algorithm in fully supersonic flow.

Equation (3.32) is linear in the unknown { %%t} By casting this equation in incremental

iterative form the following equation results:
[ et} - ) 2 ]
Qi dbk S~ [8Qi] | dsk 0Qi—1] | dpk
OR; dQ;’_Q} [6Ri}{d)—(} {BRi}
+[5Qi—2}{ a5 J 713X\ S T\ 75 3-33)
() {3
d By - dfk d By

m=1,213, .. (3.33b)
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In Eq. (3.33), the left-hand-side matrix operator [aqi] is the approximation of
convenience of the matrix [%J and is chosen such that it makes the iterative process
convergent. For the present study, the first-order upwind discretization of the Jacobian
matrix is used as the matrix operator. A time term which acts as an under-relaxation
parameter is added to the left-hand-side matrix operator. Equation. (3.33) is solved for
each cross plane, and the vector {%%E} is calculated over the whole domain. After this
complete vector is known, the sensitivity of the system response of interest with respect

to the design variable can be computed with Eq. (3.2).
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Chapter 4

. COMPUTATIONAL RESULTS

In this chapter, the SD results in two dimensions are given in separate sections for
two sample airfoil problems: subsonic low-Reynolds-number laminar flow and transonic
high-Reynolds-number turbulent flow. Sample 3-D SD results are given for geometric

and non-geometric design variables in separate subsections.

4.1 Subsonic Airfoil, Low Reynolds Number Laminar Flow

The first problem is subsonic low-Reynolds-number, constant-viscosity laminar flow
over an NACA 1406 airfoil. Flow is considered at a freestream Mach number Mo
= 0.6, an angle of attack o = 1.0°, and a Reynolds number Re = 5.0 x 10°. A C-
mesh computational grid of 257 x 65 points is used, with the “lift-corrected” far-field
boundary placed five chords from the airfoil; points are clustered near the airfoil surface
to assist with the resolution of gradients in this vicinity. The cell-centered finite-volume
formulation method with higher upwind differencing for the inviscid terms and central
differencing for viscous terms is used. The spatially split approximate factorization
algorithm is used to achieve the converged (i.e., the average global error is reduced
to machine-zero) steady-state solution {Q"} of the discrete, nonlinear flow equations.
Figure 4.1 is a plot of the computed steady-state pressure coefficient Cp on the surface
of the airfoil. The computed lift, drag, and pitching moment coefficients obtained are

CL =0.18148, Cp = 0.41703 E-01, and Cp = - 0.23718 E-01.

The SD’s of Cp, Cp, and Cy are computed with respect to six independent design



variables: airfoil maximum thickness T; airfoil maximum camber C; location of maximum
camber L; angle of attack «: freestream Mach number M. ; and Reynolds number Re.
The three design variables related to geometric shape (T, C, and L) are parameters that
together with well-known analytical expressions (given, for example, in Ref. [39]) define
the x and y coordinates on the surface (and, hence, the shape) of the NACA four—digit
airfoil. The SD’s are computed with three methods: the direct-differentiation method;
the adjoint-variable method; and the “brute-force” finite-difference method. Application
of these three methods is described subsequently in greater detail; comparisons of the
computational results are summarized in Table 4.1. For the direct-differentiation and the
adjoint-variable method, noted that the direct-solver approach was abandoned because of
storage restrictions. In this case, (“in core”) storage required by the banded matrix far

exceeded the 40-megaword storage limit placed on the standard Cray-2 computer queue.

For the direct-differentiation method, SD’s are calculated through the iterative
solution of the incremental form (i.e., Egs. (3.15), (3.16), and (3.17)) of six large systems
of linear equations (one system for each of the six design variables considered here).
The well-known spatially split approximate factorization algorithm [66] is used, with a
constant Courant number of 45 (i.e., local time stepping is used). This Courant number
was determined by numerical experimentation to be approximately the optimum for
computational efficiency for this sample problem. An eight- order-of-magnitude reduction
in the average global error is the specified convergence criterion for solving each of the
six linear systems; an average of 683 iterations is required in each case to achieve this

convergence criterion.

For the adjoint-variable method, SD’s are calculated through the iterative solution
of the incremental form (i.e., Egs. (3.18) and (3.19)) of three large systems of linear
equations, one system for each of the three systcxﬁ responses considered here. Again
the approximate factorization algorithm is used, and a constant Courant number of 45 is

determined to be the optimum. In this case, an average of 1743 iterations is required to
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obtain an eight-order-of-magnitude average global error reduction, which is the required
convergence criterion for each of these three linear system solutions.

In application of the “brute-force” finite-difference method, central finite differencing
is used, with a forward and backward perturbation of each design variable (Af =
+5.0E — 06 x ). Machine-zero converged, steady-state solutions of the discrete
nonlinear flow equations are obtained for each forward and backward perturbation of each
design variable. Thus, for six design variables a total of 12 solutions to the nonlinear
flow equations are produced. The approximate factorization algorithm is again used to
solve the flow equations; to reduce computational work during these computations, the
LU-factored block-tridiagonal systems are stored and are reused for 10 iterations: after
10 iterations these terms are reevaluated. (See Ref. [65] for additional details in regard
to this strategy, which was shown with numerical studies to be near optimum.)

The SD’s calculated with the direct-differentiation method agree closely with those
computed with the adjoint-variable method. However, the computational work required
by the latter method (in which a total of three linear systems are solved) exceeds that of
the former method (in which a total of six linear systems are solved). In addition, the
convergence rates obtained with the latter method were significantly slower than those
obtained with the former method in this sample problem. The SD’s obtained by using
finite differencing also agree closely with those obtained from the other two methods.
In all comparisons. the finite-difference method was much more costly computationally

than either the direct-differentiation or the adjoint-variable method.
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Fig. 4.1 Chordwise distribution of surface pressure coefficient NACA
1406 airfoil, Mo, = 0.6; @ = 1.0°; Re = 5x10%; laminar flow.
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Table 4.1 Summary of Computational Results for NACA 1406 Airfoil:
Subsonic Low-Reynolds-Number Laminar Flow Sample Problem

_

Solution Total CPU  Design
method time . variable dCy, dCp dCyy
(Secs) Bk Frl Fr FEa
Direct- T  -1.392E+00 +2.019 E-01 +1.805 E-O1
Differentiation C  +6.583 E+00 +7.583 E-02 -2.240 E+00
:;‘;Toﬁ‘mately 458 L -1.154E-02 +5.544 E-05 -2.122 E-02
factored a  +6.122 E+00 +9.181 E-02 -3.168 E-02
incremental Moo +5428 E-03 +1.628 E-02 -4.732 E-03
scheme Re  +5958 E-06 -4912E-06 -6.564 E-07
Adjoint T  -1.392E+00 +2.019 E-01 +1.805 E-01
-variable C  +6.583 E+00 +7.583 E-02 -2.240 E+00
;’;‘f;‘i;nately 570 L -1.154 E-02 +5.544 E-05 -2.122 E-02
factored a 46122 E+00 +9.181 E-02 -3.168 E-02
incremental Moo +5428 E-03 +1.628 E-02 -4.732 E-03
scheme Re  +5958 E-06 -4912E-06 -6.564 E-07
T  -1.392E+00 +2.019 E-01 +1.805 E-O1
" C  +6.583 E+00 +7.583 E-02 -2.240 E+00
;izitr‘:‘:ﬁ'fff‘:;ice 2404 L -L1S4E-02 +5548 B-05 -2.122 E-02
method a  +6.122 E+00 +9.181 E-02 -3.168 E-02
Mo, +5426 E-03 +1.628 E-02 -4.732 E-03
Re  +59S8E-06 -4912 E-06 -6.564 E-07 _

" All calculations performed on Cray-2 computer.
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4.2 Transonic Airfoil, High Reynolds Number Turbulent Flow

The second sample problem is transonic high-Reynolds number turbulent flow over
an NACA 1406 airfoil. The variation of the molecular viscosity with temperature
is computed with Sutherland’s law, and turbulence is simulated with the well-known
algebraic model of Baldwin and Lomax [78]. The flow is considered at a freestream Mach
number Mo, = 0.8, an angle of attack o = 1.0°, and a Reynolds number Re = 5.0 x 105. A
C-mesh with 257 x 65 grid points is again used with the lift-corrected far-field boundary
placed five chords from the airfoil; clustering of points near the surface is tighter in the
present example than in the previous example because of the higher Reynolds number.
The cell-centered finite-volume formulation method with higher upwind differencing for
the inviscid terms and central differencing for viscous terms is used. The spatially split
approximate factorization algorithm is used to achieve a machine-zero converged, steady-
state solution. Figure 4.2 is a plot of the computed steady-state pressure coefficient Cp
on the surface of the airfoil, and Fig. 4.3 is a complete contour plot of the static pressure,
which clearly shows the presence of a shock wave on the suction surface of the airfoil.
The computed lift, drag, and pitching moment coefficients are CL = 041662, Cp =

0.77501 E-02, and Cum = - 0.45633 E-0l.

The SD’s of Cy, Cp, and Cyp are computed with respect to the same six independent
design variables previously considered. The direct-differentiation, the adjoint-variable,
and the “brute-force” finite-difference methods are also applied in computing these
SD’s. However, for the direct-differentiation and adjoint-variable methods. laminar
and turbulent viscosities are assumed to be constant with respect to the field variables
{Q"} and the computational grid {X}. That is. in the analytical construction of all
derivatives (including the Jacobian matrices [%J and [g%} ), which are used to calculate
the SD’s, both laminar and turbulent viscosities are constant. For this reason, the

direct-differentiation and the adjoint-variable methods cannot give SD’s that are exact,

consistently discrete forms. Thus, the results from the “brute-force” finite-difference
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procedure are considered to be more accurate in this example. This approximation is
made because of the complexity involved in the consistent treatment the derivatives of
the turbulent viscosity. In fact, a fully consistent treatment of these terms is not possible
at points where this turbulence model is not continuously differentiable. Application
of the three methods is described subsequently in greater detail. Comparison of the
computational results are summarized in Table 4.2.

For the direct-differentiation and adjoint-variable methods, the SD’s are computed
with the spatially split approximate factorization algorithm to iteratively solve in
incremental form the required linear systems that have been described. With both
methods, a constant Courant number of 30 is numerically determined as the optimum
for the computations. In all cases an eight-order-of-magnitude reduction in the average
global error is enforced for convergence. For the direct-differentiation method. an average
of 1619 iterations is needed to achieve convergence; for the adjoint-variable method, an
average of 1798 iterations is required. Finally, the “brute-force” finite-difference method
is applied here in a manner identical to that described in the previous sample problem.

The SD’s calculated with the direct—differentiation method and with the adjoint-
variable method agree well. as expected. In addition, the total computational cost of
the direct-differentiation method is approximately twice the cost of the adjoint-variable
method. This result is expected because with the direct-differentiation method six linear
systems are solved compared with only three for the adjoint-variable method. The SD’s
calculated using the method of finite differences are compared with those from the other
two methods; some discrepancy occurs in the results because of the aforementioned
neglected consistent treatment of the viscosity terms. For the most part, the agreement
between these calculated derivatives is good. The most significant discrepancy is noted in
the SD’s ot C with respect to maximum airfoil thickness T, where the derivatives differ

by a factor of approximately three to four. However, this SD is smaller in magnitude than
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the largest derivatives. As in the first sample problem, the “brute-force” finite-difference

method is much more costly computationally than either the direct-differentiation or the

adjoint-variable method.
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Fig. 4.2 Chordwise distribution of surface pressure coefficient. NACA
1406 Airfoil; Moo = 0.8; & = 1.0° Re = 5x 10°; turbulent flow.
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Fig. 4.3 Static pressure contour plot. NACA 1406 airfoil,
My =0.8; o = 1.0°; Re = 5% 10°%; turbulent flow.
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Table 4.2 Summary of Computational Results for NACA 1406 Airfoil:
Transonic High-Reynolds-Number Turbulent Flow Sample Problem

Solution Total CPU Design
method time . valjiable dCy dCp dCyy
(Secs) By Fr3 ra P
Direct- T  +2275E-01 +2.654 E-01 -3.124 E-01
Differentiation, C  +1.942E+01 +6.511 E-01 -5.516 E+00
?:Cptzi:;matc}y 1052 L +1338E01 -1.151B-02 -5.589 E-02
incremental o +1.198 E+01 +4.200 E-01 -4.675 E-01
scheme Mo  +1.772 E+00 +1921 E-01 -5.430 E-01
Re  +4.145E-09 -4.881 E-10 -4.397 E-10
Adjoint T  +2275E-01 +2.654 E-01 -3.124 E-01
-variable C +1.942 E+01 +6.511 E-01 -5.516 E+00
;‘;‘f&‘i;ﬂawly 586 L +1338E-01 -1.151 E-02 -5.589 E-02
factored a +1.198 E+01 +4.200 E-01 -4.675 E-01
incremental Mo  +1772E+00 +1.921 E-01 -5.430 E-01
scheme Re  +4.145E-09 -4.881 E-10 -4.397 E-10
T  +7919 E-01 +2.744E-01 -4.153 E-01
C  +2.063 E+01 +6.776 E-01 -5.770 E+00
gr‘;‘t‘:_';iof;z‘:me 8526 L +LI07E-01 -1174 E-02 -5.350 E-02
method o +1.299 E+01 +4.346 E-01 -6.328 E-01
Moo  +2.040 E+00 +1.969 E-01 -5.972 E-0]
Re  -1185E-09 -2.820E-10 +1.497 E-10

" All calculations performed on a Cray-2 computer.



4.3 Comparison of SD Results in Three Dimensions

The 3-D Euler equations are solved here for a fully supersonic flow with the
space-marching method described in Chap. 2. The method is an upwind cell-centered
finite-volume scheme that is higher-order accurate (second-order streamwise and third-
order in the cross plane) and fully conservative in all directions, including the streamwise
(marching) direction. The method is locally time iterative in each cross plane with
a spatially split approximate-factorization approach. The Mach 2.4 filleted wing-body
surface definition was processed with the method given in Ref. [79] and a volume grid
subsequently generated as in Ref. [80]. Figure 4.4 is a view of the HSCT 24E (High—
Speed Civil Transport) filleted wing-body configuration, including the wake portion of

the computational grid.

4.3.1 Geometric Design Variables

Comparisons are made of the SD’s obtained with central finite differencing (SDFD)
and the IIM for several geometric variables. The geometric design variables are those
variables that define the surface of the HSCT 24E wing. Details of the wing-geometry
parameterization are given in Appendix D. Grid generation and grid sensitivity for
the present study are obtained by automatically differentiating the surface/volume-grid
generator (Refs. [79, 80]). The flight conditions chosen are Mow=24,a=1° 3 =0°.

The geometric SD results are computed on a half-space grid (37 streamwise x 49
circumferential x 15 normal points) with a Ssymmetry plane at y = 0; some forces,
moments, and SD’s are not balanced by their images and, therefore. do not vanish.
These nonvanishing components do not affect the geometric SD comparisons for the six-
component force and moment coefficient (Cy, Cy, C,, Cy, CM,,CM,) SD’s with respect
to the geometric design variables. In obtaining the SDgp, analysis solutions at design-
variable perturbations of approximately 10~ from the baseline were run from restart
solution files and converged to a relative residual reduction of 10~ !1. This process results

in an appreciable time savings for obtaining the SDgp, at least from the present CFD
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algorithm and code. The spatially split approximate-factorization algorithm is used to
solve the sensitivity equation in each cross plane with IIM. A constant Courant number of
10 is used for the computations. In obtaining the SD’s via the IIM (SDgq4), the relative
derivative-residual reduction was done to several levels: 10~ (3 orders of magnitude
(OM)). 1077 (7 OM), and 107! (11 OM). Comparisons are shown for both accuracy and
computational efficiency.

Six SD’s are compared with respect to three wing-section thickness ratios (¢C) in
Table 4.3. This table has five parts: part (a) gives the 18 SDqa; parts (b), (c), and (d)
show the 18 ratios (SDgp/SDga) for 3, 7, and 11 OM, respectively; and part (e) gives
computational time comparisons. Table 4.3(a) shows that these derivatives range in size
over nearly 3 OM and are both positive and negative. Tables 4.3(b)-(d) show that the
SDqa agree with the SDgp to between three and four significant figures. Table 4.3(e)
shows the computation of SDga to be 1.5 to 2 times faster than the computation of the
efficient SDgp (i.e., with restarts, central finite-difference time is about 2.3 rather than
6 times a baseline analysis solution time). The speed-up depends on the SD accuracy
required and the analysis code convergence performance from restarts.

Tables 4.4, 4.5, and 4.6 compare similar SD results for sample section twist, camber,
and flap-deflection geometric variables, respectively. For these cases, however, only the
11 OM SDqa comparisons are shown. Again, these derivatives vary over several OM in
size; however, agreement with the SDgp remains better than to three significant figures;
the derivatives are obtained about 1.5 times faster than those derivatives obtained with
the best SDgp computation.

Comparison of the six SD’s with respect to three wing planform variables is shown
in Table 4.7. Here, SD comparisons are shown at all three SDga convergence levels.
The SDqa agree with the SDgp to about four significant figures; in addition, they are

obtained faster with the IIM.
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4.3.2 Nongeometric Design Variables

As a consequence of using the IIM, the linear sensitivity equations are solved for the
SD’s of the field variables in each cross plane with the identical space-marching algorithm
that is used to solve the nonlinear flow equations. The computational grid used for this
study (37x121x15, with 37 points in streamwise direction, with 121 circumferential
direction, and 15 points in the normal direction) is different from the grid used to study
the geometric design variables. Force and moment coefficients for the flight conditions
Mo =24, a =0° 3 = 0° are shown in Table 4.8. The SD’s of six output functions
(Cx,Cy, C,,Cuy,, Cwm,, Cm,) with respect to Mach, Alpha, and Beta are given in Table
4.9(a). Calculated SD ratios, (forward finite differences with a perturbation size, Afy
= 1.E-05 to quasi-analytical derivatives) are shown in Table 4.9(b); these ratios are
seen to be unity to four significant figures. Table 4.9(c) shows computational time
comparisons for the calculation of SD’s with using both forward finite differences and
the quasi-analytical IIM; all times are given in terms of a baseline time. The measure of
convergence levels used for the solutions of the nongeometric design variables is given
in the footnote to Table 4.9(c). Three nonlinear flow solutions, which correspond to the
perturbed flow conditions, are obtained by using the freestream conditions as the initial
guess. The computational cost of the finite-difference method is approximately seven

times greater compared with that for quasi-analytical method.

57



Wake grid

Filleted wing-body

Fig. 4.4 HSCT 24E filletted wing-body configuration.
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Table 4.3 (a) Geometric Section Thickness SD’s of Force and
Moment Coefficients With Quasi-Analytical Incremental Iterative
Method (QAIIM) for HSCT 24E at My, = 2.4, a = 1°, and 8 = Q°

—%

SDqa Scaled design variables /3
Root t/c Break t/c Tip t/c
de +3.8635 E-04 +2.8663 E-04 +3.3805 E-05
%kx -2.4830 E-05 -2.8052 E-04 -2.0875 E-05
‘211%: +4.5475 E-04 +6.1267 E-05 +4.7231 E-06
dq(%%& +2.0925 E-05 —-1.2866 E-05 +6.1225 E-07
%L +3.4438 E-06 -35.7055 E-06 -2.0632 E-06
id%"fa +1.7229 E-04 -7.6030 E-05 -1.3698 E-05

%

Table 4.3 (b) Geometric Section Thickness SD Ratios (Einite Difference)

gggg. Design variables £

Root t/c Break t/c Tip t/c
dck 1.0000 0.9999 1.0000
% 1.0054 0.9997 1.0004
%%f 0.9995 0.9999 1.0011
id%%‘ 0.9984 1.0005 1.0023
d_f[T»:L 1.0431 1.0018 1.0007
d_d%%a 0.9997 0.9996 1.0003

(Reduction of 3 OM)



Table 4.3 (c) Geometric Section Thickness SD Ratios (Fi““—e%{m)

%gﬁ- Design variables 3
Root t/c Break t/c Tip t/c
%: 0.9999 0.9999 0.9999
dc
e 1.0000 0.9999 1.0000
%kz 0.9999 0.9999 1.0000
dd_CﬂM.x 1.0000 0.9999 1.0000
k
dCu
T 0.9999 1.0000 1.0000
%ﬂ_&k 1.0000 0.9999 0.9999
k

(Reduction of 7 OM)

Table 4.3 (d) Geometric Section Thickness SD Ratios (Einite Difference

QA
%ggﬂ- Design variables /3
Root tv/c Break t/c Tip t/c
dc 0.9999 0.9999 0.9999
k
% 1.0000 0.9999 1.0000
k
dC
T 0.9999 1.0000 0.9999
dC
13%& 1.0000 0.9999 1.0000
dCwm
T 0.9999 1.0000 1.0000
dc
S 1.0000 0.9999 0.9999

(Reduction of 11 OM)




Table 4.3 (e) Geometric Section-Thickness SD Computational-Time Comparisons

%\_—\

Solution Method Number of solutions Ratio
Baseline 1 1.000*

Central finite differencing 6 1.289
Quasi-analytical (3 OM) 3 0.2032
Quasi-analytical (7 OM) 3 0.2817
Quasi-analytical (11 OM) 3 0.3714

_— e

* Baseline solution run time for R%m reduction to

ms

e = 10~ on Cray-2 is 152 sec.



Table 4.4 (a) Geometric Twist SD of Force and Moment Coefficients

With QAIIM for HSCT 24E at Mo, = 2.4, a = 1°, and 8 = °

SDqa Scaled design variables 3
Root twist Break twist Tip twist
%: -3.6909 E-04 +2.3174 E-05 -1.7165 E-07
%% +5.3123 E-03 -1.0226 E-04 -1.7900 E-06
g_g.: +4.8539 E-03 -1.2541 E-03 -5.6965 E-06
idcﬁMf +1.0684 E-04 -1.3584 E-04 -1.1203 E-06
% -1.9188 E-03 +3.5747 E-04 +2.1336 E-06
i(%d(z. +1.8410 E-03 -3.6119 E-05 -1.060 E-06

Table 4.4 (b) Geometric Twist SD Ratios (Htite pifference) Eycept Terms of O(e)

ES'B‘E% Design variables 3
Root twist Break twist Tip twist
dC
T 0.9999 1.0000 a
dc 1.0000 0.9999 0.9999
k
g_g_: 1.0000 1.0000 1.0007
dC
_(w_htx 1.0000 1.0000 0.9999
dCm . 1.00 1.001
S 1.0000 00 013
"C‘l:_ﬁMz. 0.9999 0.9998 1.0000
k

* Ratio for extremely small quantities is meaningless.
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Table 4.4 (c) Computational Time Comparisons

Solution Method Number of solutions Ratio
Baseline 1 1.000*

Central finite differencing 6 1.0755
Quasi-analytical 3 0.3141

—_————
See note at Table 4.3.
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Table 4.5 (a) Geometric Camber Surface SD of Force and Moment
Coefficients With QAIIM for HSCT 24E at Mo =24, o = 1°, and 3=0°

SDqa Scaled design variables 3
Root C Break C Tip C
dck -6.7160 E-06 +1.6566 E-05 -9.7360 E-08
%& 2.4396 E-05 -3.0371 E-05 +7.3377 E-08
k
dck +6.1329 E-05 -7.8495 E-05 +1.3783 E-06
dc - . . - -
T 7.9197 E-06 9.2387 E-06 +3.4155 E-07
df_;L -6.7634 E-05 +6.4016 E-07 -4.6827 E-07
k
dC - - - -
T +1.0487 E-05 8.5257 E-06 +3.8453 E-08

Table 4.5. (b) (_}eometric Camber Surface SD
Ratios (F—“‘%) Except Terms of O(e)

K

SD

$peo Design variables (3

Root C Break C Tip C
de 0.9999 1.0000 a
%:. 0.9999 0.9999 a
f‘;%f 0.9999 1.0000 1.0003
% 1.0000 1.0000 1.0003
d—%‘;‘ 0.9999 1.0000 1.0003
%%%,. 0.9999 0.9999 a

2 See note at Table 4.4.
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Table 4.5 (c) Geometric Camber Surface SD Computational-Time Comparisons

Solution method Number of solutions Ratio
Baseline 1 1.000*

Central finite differencing 6 0.883
Quasi-analytical 3 0.3084

e eSS 3

* See note at Table 4.3.
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Table 4.6 (a) Geometric Flap-Deflection SD of Force and Moment
Coefficients With QAIIM for HSCT 24E at M =24, o = 1°, and 8 =0°

SDqa Scaled design variables 3
Flap I Flap II Flap III Flap IV
j—gf +7.7336 E-06 +5.5417 E-06 +7.2944 E-08 +7.3339 E-07
de -6.5184 E-06 +2.3167 E-05 -4.4830 E-08 +5.5264 E-06
g—g-: -2.1190 E-04 9.6692 E-04 -4.6974 E-06 +2.8558 E-04
dﬂ%%& -3.0110 E-05 +1.2727 E-04 -9.2512 E-07 +5.5924 E-05
%}. +5.8343 E-05 -3.1718 E-04 +1.5573 E-06 -9.7259 E-05
dd_cé‘:.z -3.6965 E-06 +9.5445 E-06 -3.0774 E-08 +2.0969 E-06

-

——

Table 4.6 (b) Geometric Flap-Deflection SD Ratios (Hinite Diflerence) Except Terms of O(e )

SD . . 3
mgl:- Design variables
Flap I Flap II Flap 1T Flap IV
dc 0.9999 0.9999 a a
k
dc 1.0002 1.0001 a 0.9997
k
4G 0.9999 1.0000 0.9998 1.0003
k
%x 0.9999 1.0000 0.9998 1.0006
k
dCy ) 1.0000 0.9998 1.0006
T 0.9999 00 00
dCw; 1.0000 1.0000 a 1.0003

=%
]
x

# See note at Table 4 4.



Table 4.6 (c) Geometric Flap-Deflection SD Computational-Time Comparisons

%——

Solution method Number of solutions Ratio
Baseline 1 1.000*

Central finite differencing 8 0.877
Quasi-analytical 4 0.3439

—_—_—
See note at Table 4.3.
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Table 4.7 (a) Geometric Planform SD of Force and Moment Coefficients
With QAIIM for HSCT 24E at M, = 24, «=1° and 8 = O°

_—

SDqa Scaled design variables 3
Root chord Break chord Tip chord
% -1.5421 E-02 +1.0243 E-03 +2.1698 E-05
dck +1.6117 E-01 -5.0936 E-04 +7.1228 E-05
g_% +4.7495 E-03 7.7265 E-04 +4.6021 E-05
é(%ix +7.1231 E-04 +1.1721 E-04 +1.7400 E-05
ﬂac_ﬂh%y_ -7.9255 E-03 -1.9745 E-04 -2.3264 E-05
dCm, +2.4522 E-02 -2.9745 E-04 -5.9707 E-05

d Bk
\

Table 4.7 (b) Geometric Planform SD Ratios (%)

4%\

%ﬁ% Scaled design variables
Root chord Break chord Tip chord

4G 1.0000 1.0000 0.9999
dgk 1.0000 1.0000 0.9991
4c 1.0018 0.9998 0.9999
40, 1.0009 0.9998 1.0001
% 1.0004 0.9998 0.9997
dCy, 1.0002 1.0000 1.0005

[=8
o)
=

(Reduction of 3 OM)
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Table 4.7 (c) Geometric Planform SD Ratios (Litite Difference)

$Den Scaled design variables 3
QA
Root chord Break chord Tip chord

%x 1.0000 0.9999 0.9999
k

dC

o 1.0000 0.9999 1.0000

g_gz 0.9999 1.0000 1.0000
k

dc

"clThi‘ 0.9999 1.0000 0.9999

%& 0.9999 1.0001 1.0000
k

dc

_dé%z. 1.0000 0.9999 0.9999

\—_\K

(Reduction of 7 OM)

Table 4.7 (d) Geometric Planform SD Ratios (Einite Difference

%%5% Scaled design variables 3
Root chord Break chord Tip chord

4&x 0.9999 0.9999 0.9999
3_% 0.9999 0.9999 1.0000
d& 0.9999 1.0000 1.0000
d.(%.; 0.9999 1.0000 0.9999
ddi;:y_ 0.9999 1.0001 1.0000
2O 1.0000 0.9999 0.9999

(Reduction of 11 OM)



Table 4.7 (e) Geometric Planform SD Computational-Time Comparisons

Solution method Number of solutions Ratio
Baseline 1 1.000*

Central finite differencing 6 1.322
Quasi-analytical ( 3 OM) 3 0.2046
Quasi-analytical (7 OM) 3 0.2829
Quasi-analytical (11 OM) 3 0.3606

—_—_—————
See note at Table 4.3.
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Table 4.8 Force and Moment Coefficients for HSCT 24E at M, = 2.4, o =0°, and 3=0°

e —— e

Cx (= Drag)
Cy (= Side)
C, (= Lift)
Cm, (Roll)
Cw, (Pitch)
Cum, (Yaw)

@ Baseline solution runtime for ( * ) reduction to € = 10~® on Cray-2 is 827 sec.

0.0044
O(e)

-0.0133

< O(e)
0.0055
< O(e)

Table 4.9 (a) Nongeometric SD of Force and Moment coefficients
With QAIIM for HSCT 24E at Mo, = 2.4, @ = 0°, and 8 = 0°

SDqa Design Variables 3
Moo a 8
dCx - -
ac 0.0024 0.0225 O(e)
dC -
T < Ofe) O(e) 0.0614
%kz +0.0079 +1.4714 0O(10¢)
dC -
_deMk < O(e) < O(e) 0.0094
dCu -0. -0.3244
E- 0.0033 O(10¢)
40wy < O(e) O(e) -0.0009
dBi
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Table 4.9 (b) Nongeometric SD ratios (gf%‘ﬂffﬁ) except terms of Ofe)

%gﬁ. Design Variables 3

Moo a I¥]
%?} 0.9999 1.0000 a
dc, a a 0.9999
%kz 0.9999 1.0000 a
40u, a a 0.9999
d?%%y_ 0.9999 1.0000 a
id%z a a 0.9999

? Ratio for extremely small quantities is meaningless.

Table 4.9 (c) Nongeometric SD Computational-Time Comparisons

Solutions Numb'cr of Ratio
solutions

Baseline 1 1.000*

Central finite differencing 6 3.426

Quasi-analytical 3 0.487

e e te———————————
— M - ———— ]




Chapter 5

HSCT AERODYNAMIC OPTIMIZATION STUDIES

The purpose of the initial studies presented in this chapter is simply to indicate the
feasibility of using the SD obtained by the IIM in aerodynamic design optimization or
MDO procedures. A generic MDO via SA for two disciplines is flowcharted in Fig. 5.1.
These initial applications of the 3-D marching Euler code (MARSEN) with efficient
geometric SD calculations are for aerodynamic optimization studies in which the CFD and
grid-generation codes are considered as separate disciplines. The optimization procedure
is demonstrated in the present study for 3-D inviscid, fully supersonic flow over the

HSCT 24E configuration.

5.1 Grid Generation and Grid Sensitivity

The geometry processing and grid-generation codes used here [79, 80] take as input
the simplified numerical descriptions of configuration components in a wave-drag, or
Harris, format. The various component surfaces are first intersected and filleted into
a continuous surface; then suitable computational grids are generated. A sample Euler
marching grid generated for the HSCT 24E is given in Fig. 5.2. For the present study,
geometric SD are propagated from a design-variable parameterization of the HSCT 24E
configuration through these surface-processing and volume-grid-generation codes. These
latter codes have been linked together, front ended with a 42-variable wing-geometry
parameterization [81, 82], and automatically differentiated. The parameterization [81] of

the HSCT 24E wing geometry is divided into three variable types: 7 planform variables,



15 section-thickness variables (5 each at the root, break, and tip sections), and 20
camber-surface variables. The geometry parameterization used herein is discussed in
appendix D; the camber parameterization used in Ref. [81] has been replaced. As in
Ref. [81], propagation of the geometric SD through the automated geometry package is
accomplished with the AD [83, 84] precompiler tool ADIFOR (Automated Dlfferentiation
of FORtran) [9]). Execution of the ADIFOR-enhanced automated geometry package then
calculates not only the grid but also the grid SD’s with respect to the design variables
used in the geometry parameterization. Both are required as input to the flow code,

which has been differentiated “by hand”.
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5.2 Sample 3-D Optimization Results

The Automated Design Synthesis (ADS) program [85] is used for the optimization
code in these studies, basically in a “black box” manner. The two disciplines, CFD
and the geometry and grid generation, are coupled sequentially at each optimization
step. that is. information passes from the geometry to the grid generation to the flow
code with no feedback within each step. The design variables for thickness, camber, flap
deflection, and planform have been activated separately to ascertain whether the predicted
changes are reasonable when only a supersonic cruise point is considered. The fact that
other discipline codes are not participating in the MDO requires that side constraints
be specified on the design variables (i.e., with no structural input, minimum thicknesses
must be set). Use of the ADS code requires that three options be selected: a strategy,
an optimizer, and a one-dimensional search. The following options have been selected
for the present constrained optimization results: the sequential quadratic programming
strategy, the modified method of feasible directions optimizer, and the Golden section
line search. Function and first-order derivative information is given to the ADS code.
Because the SD’s obtained via the IIM are local derivatives, this combination of methods
in ADS appears to provide the most consistent optimization results. However, many

tunction evaluations are required by the selected search procedure.

The HSCT 24E filleted wing-body configuration generated at NASA Langley
Research Center is the baseline for these shape-design-improvement studies. These
sample studies are done separately for 15 wing-thickness variables, both 28 and 8 wing-
camber variables, 4 flap-deflection variables, and 5 wing planform design variables. A
summary of results for each of these five studies is given (Tables 5.1 to 5.6. which also
will be discussed individually). For these studies. the flow conditions are: My =24,
a =1° and 8 = 0° (also noted in each table title). Convergence of both the nonlinear
iterative flow analysis and the linear iterative SA was to a relative residual reduction of

6 OM for all required solutions. Extensive use was made of restart solution files for the
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flow analysis solutions.
5.2.1 Drag Reduction: Wing-Section Thickness Design Variables

Sample results for the HSCT design improvement study with wing-section thickness
variables are given in Table 5.1. Table 5.1(a) is a summary and 5.1(b) gives the initial
and final values of the 15 design variables. The 15 thickness design variables are the 5
parameters listed in Table D3 in Appendix D at the wing root, break, and tip locations.
The wing thickness is linearly lofted from root to break and break to tip to supply thickness
information at all other wing stations (Table D1 in Appendix D). The objective function
is drag minimization, and the wing-root bending moment and lift are constrained to their

baseline values; that is,

minimize

C
subject to M. <1.0
CMy,,

2z o510

Czo -

The drag improvement evident in Table 5.1(a) is about 10.5 percent, and both constraints
are active (within £0.5 percent of the baseline value). This improvement was obtained in
8 optimization steps, which required 117 function evaluations and 8 gradient evaluations;
the Cray-2 run time was approximately 1.2 hours.

With regard to the run time of the codes on the Cray-2 for a relative residual reduction
of 6 OM with 15 design variables, the initial 267 seconds consists of about 67 seconds
for an analysis run from a dead start and 200 seconds for the 15 SD evaluations by the
IIM. If all function evaluations, including those for the central SDep required for this
study. were done from a dead start (i.e., with a uniform free stream), then the total CPU

time would have been about 23,920 seconds or 6.64 Cray-2 hours. Therefore, the total
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time savings with the use of restart files is about 18,750 seconds: the savings due to the
use of SD evaluations via the IIM is an additional 800 seconds. Note. however, that the
time savings due to the use of restart files is code dependent and appears to be large for
the present analysis code; the time savings for using SD evaluations via the IIM instead
of using SDgp from a dead start would be about 14,480 seconds.

For supersonic flow considerations alone, the wing would be expected to become
thinner, which occurs as shown in Fig. 5.3. Table 5.1(b) shows the initial and final values
of the 15 thickness design variables and indicates those variables that are influenced by
the side constraints (bounds). For 6 of the 15 variables, the side constraints are active
(within 5 percent of the specified bounds, which for the thickness variables were taken
to be + 50 percent of the baseline values). These active side constraints tend to “trap”
the optimization in a “corner” of the design parameter space, which may not be realistic
because the nonparticipation of the other disciplines has only been mimicked by the side

constraints.
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5.2.2 Lift Improvement: Wing-Section Camber Surface-Elevation Design Variables

Sample results for the HSCT lift-improvement studies with wing-camber surface-
elevation design-variables are given in Tables 5.2 and 5.3 for cases with 28 and 8 design
variables respectively. In these studies, the camber design variables at the first two
wing stations were held constant because the body camber line of the filleted wing-body
configuration was fixed and because the wing lofting to determine the body intersection
and filleting involved these first two wing stations. The camber surface, for most of the
baseline HSCT 24E outboard wing, appeared to vary linearly from just beyond the break
to the tip. Therefore, 28 camber variables were active in the first study: 4 each (Table D4
in Appendix D) at wing stations 3 through 8 (break) and at wing station 18 (tip) (Table
D1 in Appendix D) with linear lofting from break to tip. Eight camber variables were
active in the second study: four each at both wing station 8 (break) and at wing station
18 (tip) with a parabolic lofting from root to break (i.e., a curve that passes through the
break variable and the fixed camber variables at wing stations 1 and 2) and with a linear

lofting from break to tip. For these studies, the objective and the constraints are

minimize -

subject to CC;M" <10

As shown in Table 5.2(a), a lift improvement of about 7 percent was obtained in
nine optimization steps. and the constraints were active. The nine optimization steps
required 136 function evaluations and 9 gradient evaluations for 28 design variables. If
all function evaluations and central SDrp were done without the restart, the total CPU

time would be approximately 42,900 seconds rather than 6680 seconds. The camber
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design-variable changes for this improvement study are given in Tables 5.2(b)-(e), for
each of the four camber parameters respectively. For 22 of the 28 variables. the side
constraints are active.

Contour plots of the camber surface elevation Z¢ are compared in Fig. 5.4. The con-
tour plot for the HSCT 24E is shown in Fig. 5.4(a), and the plot from the lift-imrovement
study with 28 wing-camber design variables in Fig. 5.4(b). The latter plot appears to be
rougher than that for the baseline. The difference is more evident in Fig. 5.5, which
compares the spanwise variations of the camber-surface elevations at the wing midchord
and the wing trailing edge. As noted in Appendix D, this camber surface elevation
includes not only the customary camber parameter A but also a wing-twist parameter
ZTE and camber-inflection parameter E. No spanwise control or smoothing was enforced
in the 28-variable optimization case.

The purpose of the 8-variable study was to add spanwise control on the adjustment
of the wing-section camber design variables. The effect is evidenced in both Fig. 5.4(c)
and Fig. 5.5 as a much smoother spanwise variation of the camber surface elevation in
comparison with the variation seen in the 28-variable study. Wing lift-improvement
results for the 8-variable case are summarized in Table 5.3. The lift increase of
approximately 2.6 percent was obtained in eight optimization steps; both constraints, as
well as the side constraints on four of the eight design variables, are active. Comments
similar to those made about the previously shown sample studies also apply to the CPU

times for this case.
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(a) - BASELINE HSCT24E WING.

(b) - FINAL HSCT, 28 VARIABLE DESIGN.

(C) - FINAL HSCT, 8 VARIABLE DESIGN.

Fig. 5.4 Camber contours of wing camber surface elevations
(contours of constant Z¢) for HSCT lift-improvement studies.
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5 At X/C=50%

-l ————— Baseline
.............. 28D Final
~—-——--—" 8D Final

-4 . ! | L L ' L : .

Root Break Tip

ol ————— Baseline
.............. 28D Final
S 8D Final
-4 L L ] L L L . . l
Root Break Tip

Fig. 5.5 Comparison of spanwise variations of wing

camber surface elevation for HSCT lift-improvement study.
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5.2.3 Lift Improvement: Flap-Deflection Variables

In MDO applications, all CFD solutions should be provided for at least an approxi-
mately deflected and a trimmed configuration. As a first step in this multiple discipline
interaction, the static balance and trim control-surface deflections should be investigated
for advanced CFD code solutions. Four outboard flaps were defined as part of the baseline
HSCT 24E wing; these are shown in Fig. D2 in Appendix D for the design. Typically,
the flaps would be “designed” at low-speed flow conditions with takeoff and landing. At
high-speed flow conditions, they might be deflected for trim and control purposes. An
indication of their effectiveness for lift improvement on the HSCT 24E is demonstrated
by the sample results shown in Table 5.4. The objective and constraint functions are the
same as in the other lift-improvement studies; here, Table 5.4 shows that a 1-percent lift
increase is obtained in five optimization steps and both constraints are active. Initial and
final values of the scaled flap deflections are shown in Table 5.4.

Table 5.4 shows that the flap deflection SD’s for these outboard flaps are rather small
in comparison with the SD’s for some of the other geometric design variables. As a
result, no attempt has yet been made to trim the pitching moment for the HSCT 24E.
Two studies were done, however, on a delta wing for which larger inboard and outboard
flaps were defined. In the first study, a lift improvement of 1.2 percent, with bending
moment and drag constrained, was obtained in five optimization steps. In the second
study, the pitching moment was changed approximately 8.6 percent in six optimization

steps, with bending moment, lift, and drag constrained.
5.2.4 Lift Improvement: Wing Planform Design Variables

Planform optimization should be accomplished as a MDO study because input from
other disciplines is required. Therefore, planform optimization is typically done (1) early
in the design cycle at the conceptual or early preliminary design stages in which these
other disciplines participate and (2) with linear aerodynamic codes. Generally, several

(or more) discrete planforms are selected, and section variables are then optimized for
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each planform study. In the sample case presented in this section, lift optimization for
constrained wing bending moment and drag has been done with five planform variables
(those shown with solid arrows in Fig. DI in Appendix D); all other design variables
were held at their baseline HSCT 24E values. In the next section, samples of the more
conventional camber optimization for different planforms are given and discussed.

Results for lift optimization with respect to five planform variables are given in
Table 5.5. A minimum (perhaps a local minimum) has been found in four optimization
steps with a lift improvement of 5.5 percent and the drag constraint violated by 3.8
percent. Neither the wing bending-moment constraint nor any of the design-variable side
constraints are active or violated.

The baseline and optimized planforms are shown in Fig. 5.6. For supersonic flow
considerations alone, the wing tip should be swept more than in the baseline HSCT 24E;
Fig. 5.6 shows that the optimization procedure is in agreement with this result. At a
Mach number of 2.4, the Mach angle is 24.6°. The angle subtended by the wing-tip
leading edge from the root leading edge is 25.9° for the baseline HSCT 24E and 23.8°
for the final optimized planform, as depicted in Fig. 5.7. That is, the planform optimized
for only supersonic flow lies behind the Mach cone.

Planform optimizations with other objectives (e.g., drag minimization or lift to
drag ratio maximization) and different design variables have been completed; however,
comprehensive conclusions cannot yet be drawn. In particular, for the optimization results
just presented, the planform area changed. In the present study, the geometry and grid-
generation codes have not been differentiated with respect to planform area in order to
constrain it formally in the optimization. For the double trapezoidal wing planform, this
can be done with the three wing chords and two wing spans held fixed, which allows only

the inboard and outboard wing panel sweeps to change. (See Fig. D1 in Appendix D)
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Fig. 5.6 Planform design improvement at cruise condition.
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Baseline e
———= Final

e — Mach line

Fig. 5.7 Planform design improvement shown with Mach angle.
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5.2.5 Lift Improvement: Camber Variables, Various Planforms

Two planforms that differ from the baseline HSCT 24E were selected for camber
optimization studies to improve lift, subject to constrained wing bending moment and
drag. The two planforms were a clipped delta wing and a clipped arrow wing with
planform area and root chord equal to those for the baseline HSCT 24E. The tip chord
for these two clipped planforms was 1/10 of the HSCT 24E tip chord. The leading-edge
sweep of the arrow wing was taken to be that of the inboard panel of the HSCT 24E.
These three planforms are shown in Fig. 5.8.

A summary of the camber optimization study for the three planforms is given in
Table 5.6. The results for the HSCT 24E are those given in Table 5.2 for the 28-variable
case; these results have already been discussed in detail. Lift improvement and active
constraints occur for all three planforms. The resulting camber surface for the delta wing
is rough, as for the HSCT 28-design-variable case previously discussed. The camber
surface for the arrow wing was not nearly as rough; however, only three optimization
steps were taken. Comments similar to those made previously about the HSCT camber

optimization also apply to the CPU times for these two clipped planform studies.
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(a) - BASELINE HSCT24E WING

(b) - DELTA WING

(c) - ARROW WING

Fig. 5.8 Comparison of various planforms for lift-improvement studies.



Table 5.1 (a) Wing Thickness Optimization Study: Design-Improvement Summary
with 15 Design Variables for HSCT 24E at Mw =24, a = 1°, and A8 =0°

%

Initial Final % Change
Objective (Cy) 1.9361 E-03 1.7311 E-03 ~-10.59E+00
Constraint I (Cy, ) 8.4735 E-04 8.4735 E-04 +0.55E-Q3**
Constraint IT (C,) 1.9086 E-02 1.9087 E-02 +0.68E-(2**
Number of function
) 1 117
evaluations
Number of gradient
) 1 8
evaluations
CPU time (sec)* 267 4369

—_————— 4{&
* Run time on Cray-2 for reduction of 6 OM in analysis and SD residuals at every
evaluation.

** Active constraint or side constraint on design variable.
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Table 5.1 (b) Wing Thickness Optimization Study: Scaled Design-Variable Changes

Design variable Initial value Final value % change
Root I 3.6811 3.2830 -10.8
Break I 4.0288 2.8481 -29.31

Tip I 4.0288 2.1917 -45.60**
Root B 4.8950 5.8788 +20.10
Break B 6.1160 8.6057 +40.71

Tip B 6.1160 8.9049 +45.60**
Root t/C 2.9710 2.8824 -2.98

Break t/C 2.5000 2.4141 -8.59
Tip v/C 2.5000 1.3084 ~47.66**
Root Xm 6.0000 5.0874 -15.21
Break Xm 5.0000 4.5458 -9.08
Tip Xm 5.0000 4.1718 -16.56
Root Tau 4.1830 2.1763 —47.97**
Break Tau 2.8980 1.5078 —47.97**

Tip Tau 2.8980 1.5765 —45.60**
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Table 5.2 (a) Wing Camber Optimization Study: Design Improvement Summary
with 28 Design Variables for HSCT 24E at My, = 2.4, a = 1°, and 4 = (Q°

Initial Final % Change
Objective (C,) 1.6446 E-02 1.7584 E-02 +6.92

Constraint I (Cy,, ) 4.0315 E-04 4.0228 E-04 —.22%*
Constraint II (Cy) 2.0253 E-03 2.0259 E-03 +0.03**
Number of funcnon 1 136

evaluations
Number of gradient

) 1 9

evaluations

CPU time (Sec)* 400 6676

* See note at Table 5.1.
** See note at Table 5.1.

Table 5.2 (b) Wing Camber Optimization Study: Scaled Twist Design-Variable Changes

Wing station Initial value Final value % change
3 9.6 4.820 —49.79**
4 8.22 4.110 -50.00**

5 1.425 0.998 -42.70

6 1.714 0.999 —41.72

7 1.780 1.637 -18.33

8 (break) 1.493 1.624 +8.77
18 (tip) 2.660 3.990 +50.00**

—. = —— R
NS e —————————————



Table 5.2 (c) Wing Camber Optimization Study:
Scaled Camber Design-Variable Changes

Wing station Initial value Final value % change

3 2.780 4.163 +49.75%*
4 2.684 3.425 +27.61

5 2.371 1.187 -49.94**

6 1.952 0.976 -50.00**

7 1.508 0.754 -50.00**

8 (break) 1.028 0.514 -50.00%*
18 (tip) 1.640 1.977 +20.61

e

Table 5.2 (d) Wing Camber Optimization Study:
Camber-Inflection Design-Variable Changes

%

Wing station Initial value Final value % change
3 2.092 1.047 —49.95**

4 1.557 0.780 —49.90**

5 1.228 1.842 +50.00**

6 9.944 4.986 —49.86**

7 7.738 11.607 +50.00**

8 (break) 5.722 8.565 +49.69**

18 (tip) 8.572 12.591 +46.89**




Table 5.2 (e) Wing Camber Optimization Study: Scaled
Maximum-Camber-Location Design-Variable Changes

——_—%

Wing station Initial value Final value % change
3 4.000 5.994 +49.85**

4 4.000 5.996 +49.90**

5 4.000 2.003 -49.90**

6 4.000 2.000 -50.00**

7 4.000 2.000 -50.00**

8 (break) 4.000 2.000 -50.00**

18 (tip) 5.000 2.500 -50.00%*




Table 5.3 (a) Wing Camber Optimization Study: Design-Improvement Summary
with 8 Design Variables for HSCT 24E at M = 24, o = 1°, and 8 =0°

_—

Initial Final % change
Objective (C,) 1.5186 E-02 1.5578 E-02 +2.58

Constraint I (Cy, ) 2.9336 E-04 2.9338 E-04 +0.49 E-Q2**
Constraint I (Cy) 2.0496 E-03 2.0498 E-03 +0.75 E-Q2**
Number of functmn 1 105

evaluations
Number of gradient

) 1 8
evaluations
CPU time (sec)* 137 2978

* See note at Table 5.1.
** See note at Table 5.1.

Table 5.3 (b) Wing Camber Optimization Study: Design-Variable Changes
%

Design variable Initial value Final value % change
Break ZTE 1.4930 1.3318 -10.80
Break A 1.0283 0.9914 -3.59
Break E 5.7222 6.0098 +5.03
Break XMA 4.0000 2.2021 -44.50

Tip ZTE 2.6600 4.7880 +80.00**

Tip A 1.6400 2.9520 +80.00**

Tip E 8.5717 15.4290 +80.00**

Tip XMA 5.000 9.000 +80.00**

—_——————

** See note at Table 5.1.
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Table 5.4 (a) Wing Flap-Deflection Optimization Study: Design-Improvement
Summary with 4 Design Variables for HSCT 24E at My, = 2.4, o = 1°,and 8 = 0°

Initial Final % change
Objective (C,) 1.9087 E-02 1.9309 E-02 +1.17 E+00
Constraint I (Cy, ) 8.4736 E-04 8.4727 E-04 -0.10 E-02**
Constraint II (Cy) 1.9361 E-03 1.9361 E-03 +0.63 E-Q5**
Number of function
) 1 76
evaluations
Number of gradient
) 1 5
evaluations
CPU time (sec)* 99 1581

* See note at Table 5.1.
** See note at Table 5.1.

Table 5.4 (b) Wing Flap Deflection Optimization Study: Scaled Design-Variable Changes
%—7

Flap number Initial value Final value
I 0 -2.4125
II 0 + 0.2644
Im 0 +10.000
v 0 -1.7263




Table 5.5 (a) Wing Planform Optimization Study: Design-Improvement Summary
with 5 Design Variables for HSCT 24E at Mo, = 2.4, o = 1°, and 4 = 0°

Initial Final % change
Objective (C,) 1.9086 E-02 2.0133 E-02 +5.5
Constraint I (Cy, ) 8.4736 E-04 8.4153 E-04 —0.69
Constraint II (Cy) 1.9361 E-03 2.0104 E-03 +3.83%**
Number of functwn 1 102
evaluations
Number of gradient
) 1 4
evaluations
CPU ume (sec)* 132 2701
o —

* See note at Table 5.1.
*** Constraint violated.

Table 5.5 (b) Wing Planform Optimization Study: Scaled Design-Variable Changes

Design Variable— Initial value Final value % change
Root chord 1.420 1.456 +2.52
Break chord 4.236 4.269 +3.24

Tip chord 9.303 1.488 -84.00
9.965 10.358 +3.94

X break Leading Edge

X tip Leading Edge 13.840 15.263 +10.28




Table 5.6 Wing Camber Optimization Study: Summary
for Various Planforms at M., = 24, a=1°and 3 = O°

4\

HSCT DELTA ARROW
Objective (C,), % + 6.92 +5.17 +3.23
Constraint I ( Cmy ), % ~0.22 E+00** —0.52 E-04** -0.68 E+00
Constraint IT (Cy), % +0.32 E-01** +0.81 E-Q1** +0.43 E+00**
Number of .funcnon 136 150 53
evaluations
Number of 'gradlent 9 9 3
evaluations
CPU time (sec)* 6676 6888 2760

ﬁ—__%}
* See note at Table 5.1.
** See note at Table 5.1.




Chapter 6

SUMMARY AND CONCLUSIONS

The Incremental Iterative Method (IIM) is developed to calculate consistent, discrete
sensitivity derivatives (SD’s). The method is successfully implemented in the calculation
of consistent, discrete SD’s for the two-dimensional (2-D) thin layer Navier-Stokes
equations and the three-dimensional (3-D) Euler equations. The lift-corrected far-field
boundary condition is implemented in the 2-D aerodynamic analysis code and sensitivity

analysis (SA) code.

The SD’s obtained in two dimensions with the direct-differentiation and adjoint-
variable approaches are compared with SD’s from finite differences for accuracy and
efficiency. Not only do the results from these two methods compare well with those
from the finite-difference approach, they are computationally less expensive to obtain. In
two dimensions, these methods are applied to two example airfoil problems: subsonic
low-Reynolds-number laminar flow and transonic high-Reynolds-number turbulent flow.
for which the three geometric design variables and three nongeometric design variables
(Mach number, angle of attack, and Reynolds number) are considered. The SD’s obtained
for the turbulent flow case do not agree “exactly” with the finite-difference results, as
expected, because the differentiation of the turbulence terms is neglected due to the
complexity of these terms; for the most part, this error was small, but in a few cases,

it was significant.

The SD’s obtained in three dimensions with the direct-differentiation approach are

compared with finite differences for accuracy and efficiency. In three dimensions, this



procedure is demonstrated on the High-Speed Civil Transport (HSCT) configuration
generated at NASA Langley Research Center, and SD’s are obtained with respect to
three nongeometric design variables (Mach number, angle of attack. and yaw angle) and

many geometric design variables.

After successful implementation of the IIM in two and three dimensions, these SD’s
are used in a gradient-based design optimization. Planform, thickness, and camber design
improvement studies are done for the HSCT 24E for a supersonic cruise condition with
efficiently calculated SD’s via the IIM. Remarks in regard to the design-improvement

study are summarized as follows:

1. Formulation of the optimization problem is critical. Based on how a problem is

posed, the optimization procedure may give completely different answers.

2. An optimization procedure that uses local exact derivatives should not take large

step sizes in the design variables.

3. A certain degree of robustness is required in all steps of the optimization. For
example, in the present study, the surface/volume-grid generation procedure failed to

generate the grid for certain shapes generated by the optimizer.

This IIM is very general and can be easily implemented in any existing CFD code
to obtain SD’s. Approximations of convenience can be introduced in the matrix operator
and thus the same solver that is used for aerodynamic analysis can be used for the SA.
Tools like ADIFOR can be used to construct the right-hand side of the sensitivity equation
in incremental iterative form. This method currently is being implemented in TLNS3D,
for example to calculate SD’s. Furthermore, efforts are underway at Argonne National

Laboratories to construct a template that can differentiate any CFD code with the IIM.

The design-package code developed in this study can be used for static balance
and trim control of the HSCT 24E configuration, in which the objective is to stabilize

the configuration with flap deflection as the design variable. This design-package code
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can also be coupled with a finite-element structures code for aeroelastic studies and for
muludisciplinary design optimization studies in which structures and aerodynamics are
treated as separate disciplines: this effort is currently under investigation. The marching
Euler code, equipped with the capability to calculate efficient SD’s can also be used for
shock-wave propagation and sonic boom studies for the HSCT 24E configuration. The
single-block marching Euler code developed in this study can be extended to a multiblock
version with the added capability to perform viscous calculations. The viscous terms can
be differentiated with ADIFOR, and the resulting differentiated code can be coupled
with the existing hand-differentiated code, MARSEN (marching Euler sensitivities), to
calculate the SD’s.

Currently, the linearized system for aerodynamic analysis and the linear system for
SA are solved with the spatially split approximate factorization algorithm. To further
improve efficiency in solving the linear system, a Krylov-subspace-based method, such
as the Generalized Minimal Residual (GMRES) solver, can be added to the existing
code. As an additional future application, the IIM can be used on unstructured grids to
calculate SD’s: unstructured grids can be used more easily than structured grids to model

complicated geometries such as the HSCT 24E.
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APPENDIX A
GOVERNING EQUATIONS IN CURVILINEAR COORDINATES

The governing equations in the present study in three dimensions are the inviscid,

compressible, unsteady Euler equations given in generalized curvilinear coordinates as

follows:
0 /a 0 ([~ d /a d /-
5:(Q) 5 (F) + 5, (6) + 5 () =0 A
where
P pU
-~ Q pu . F pUu + &xp
Q=5= o/, F=xs=1pUv+4p
pw pUW + &,p
e (e+p)U
pV pW
.G pVu + nxp . H pWu + (xp
G=5=|pVv+np|, H= 5= 1pWv+(p
pVW+T]zp pWw + Gp
(e +p)V (e + p)W

U= fxu"‘fyv + &w
Vv = nxu + 1y v + p,w

W= (yu + Cyv + Gw

above J is the Jacobian of the transformation from the Cartesian coordinates (x.y,z)
to the generalized curvilinear coordinates (£,m,¢), where ¢ corresponds to the streamwise
direction, n corresponds to the circumferential direction, and ¢ corresponds to the direction
normal to the body surface. The conservation laws of mass, and momentum in the X, Y,

and Z directions and the energy equations are expressed symbolically in Eq. (A.1).
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In the present study, the governing equations in two dimensions are the unsteady,

compressible thin-layer Navier-Stokes equations given as

(@) +Z(7) +2(6-6)) =0

73 ¢
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The molecular viscosity is calculated with Stokes’s hypothesis, a is the speed of sound, Pr

is the Prandtl number (Pr = 0.72), and Rey_ is the Reynolds number. The nondimensional

molecular viscosity is calculated with Sutherland’s law and a reference temperature T,

which is the static temperature of the free stream. For turbulent flow calculations, the

algebraic turbulence model of Baldwin-Lomax is used to calculate the turbulent viscosity.



APPENDIX B
LINEARIZATION OF FAR-FIELD BOUNDARY
CONDITIONS FOR LIFTING AIRFOILS

The far-field boundary conditions used in this study are Riemann invariants. In
this appendix, a procedure is outlined to linearize the far-field boundary conditions; this
procedure is extended to include the lift-corrected far-field boundary condition.

The nonlinear residual expression on each boundary cell face can be written

symbolically as

{RB(QB(8),Qir(8),X1(8),5)} = {0} (B.1)

where {Rp} is a four-component vector written as a function of the state variables on the
boundary cell face Qp, state variables at the first interior point Qyp, local grid coordinates
X), and explicit dependence on the design variables 5. The two relationships enforced

at each boundary cell face are given as follows (two components of {Rp}):

'R =>R{ - R;

R=>Rj - R3, (B.2)

where 'R is the outgoing Riemann invariant and R is the incoming invariant. With
these Riemann invariants, the local velocity Ug and the local speed of sound ap are

calculated as follows:

- R+°R
UB——Q_
1 2
R —*R)(y -1
an = & Jor =) (B.3)

4
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Based on the value of the local velocity Up, R and *R (the third and fourth
components of {Rg}) are enforced with the tangential velocity V and the entropy S

as shown in Egs. (B.4), where Ug > 0 indicates the outgoing flow and Ug < 0 indicates

UB>O, UB<O
SR => Vg = Vip =0, SR => VE=Ve =0 (B.4)
‘R=>Sg—Sip =0, "R=>8Sp -5 =0

the incoming flow. Here, the subscripts B, IP, and oo represent flow-field quantities on
the boundary, on the first interior point, and for the free-stream, respectively.

By taking the derivative of the Eq. (B.1) with respect to the design variable Fy in
the following equation results:

gt | = 0

ORg| [dQp ORp J { dQIP} [BRB} {Xm} {BRB} 3
[6%]{ 4By } * [GQIP a6 J % | \aBS T 3B s = 1O B

where {g%ﬁ-} and [%B-] are 4 x4 Jacobian matrices and [-B—Ri] is a 4x2 Jacobian matrix.
B 1P axy

Here, the term {g%f} represents the grid-sensitivity vector. The vector { %f-} is nonzero
if the residual expression is explicitly dependent on the design variable Bk. Calculation

of the expressions in Eq. (B.5) is straightforward and is not discussed here.

The lift-corrected far-field condition discussed in Ref. [61] has a distinct advantage
because accurate force and moment coefficients can be calculated with a reduced extent
of the far-field boundary. The use of the “point-vortex” correction to improve the
far-field boundary condition is straightforward to implement in an explicit sense. Its
explicit implementation involves the use of a point-vortex (centered at the quarter-chord)
representation of the airfoil, where the strength of the point vortex (i.e., the circulation
[') is proportional to the lift coefficient Cy, of the airfoil. The purpose of this point vortex

is to more accurately model the influence of the lifting airfoil on the velocity field in the
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vicinity of the far-field boundaries (compared with the alternative of assuming a free-
stream velocity field here). which results in more accurate airfoil calculations, particularly
as the extent of the far-field boundary from the airfoil is decreased.

The implementation of this point-vortex correction results in a numerical coupling
of the far-field boundary-condition equations to (through the lift coefficient CL) the field
variables and also to the (x, y) grid coordinates on and adjacent to the surface of the
airfoil. As a consequence of this coupling between each far-field boundary condition
equation and the field variables and grid points on and adjacent to the surface of the airfoil,
algebraically, complex additions are necessary to the global Jacobian matrix [g%} (which
destroys the banded matrix structure) and also to [4%]. To avoid the task of explicitly
deriving these terms and their precise locations in these Jacobian matrices, a simplifying

strategy is proposed.

Equation (B.1), with lift-coefficeint Cy_ as the additional field variable, is written as

{RB(QB(8),Qir(B),X1(B),5,CL)} = {0} (B.6)

The second and third components of Eq. (B.6) are different from Eq. (B.1), and the
remaining two components of this four-component residual expression are the same. Only
these two components are different because of the involvement of free-stream quantities,
which are redefined with the lift-corrected far-field boundary condition. The free-stream

quantities Ue, Voo, and a are defined for the lift-corrected far-field boundary condition

as

Ueo = cOsa + Fsiné

Voo = sina — Fcos 6

CLeC 7/ 5 1
F=— l—Mwy[l—Mgosin(()——a)]
~ 2_|__ 2
amz\/<h0w—” 2" )(7—1) (B.7)
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where r and 6 are the radius and polar angle in the physical plane, My is the free-stream
Mach number, o is the angle of attack. 7 1s the ideal gas constant, C is the chord of
the airfoil, and hgo, is the stagnation enthalpy. The polar angle is defined as positive
counterclockwise from the chord line downstream of the airfoil quarter-chord. The speed
of sound a., is determined by ensuring that the total enthalpy is constant. Here, the
modified free-stream quantities are represented with ‘7. The sine and cosine of the

polar angle can be calculated as

sinfl = &
r
A

cosf = =X

r

where

Ax=xp_x0) Ay=Yp_YO
1 1
Xp = §(X1 +x2), yp= 5(3’1 + y2)

r= /() + (Ay)? (B.8)

above, the quantities (x0, yo) represent the aerodynamic center of the airfoil. For the
present study, xo = C/4 and yo = 0, where C is the chord of the airfoil. Quantities (xp,
¥p) represent the coordinates of a cell face, calculated by taking the average of the edges

of the cell face. If we substitute for sinf and cosf in Eq (B.7) the following equation

results:

47

/1 2
Voo = sina + CrL(-Ax) (;M;'o) ! (B.9)

47

V01— M
Ueo = cosa + CpL Ay (‘w> -1
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where

f=(1-Misina)Ax? + (1- Mgocosza)Ay2 + (2M2, sin a cos a) AxAy

If we differentiate Eq. (B.6) with respect to the design variable Sy, the result is
] {10 s 00 ] o) e
0Qg ] | dbk 0Qrp ] | dp Xy ] | dBk 0P

dRp ) dCy, _
3o a5 = (B0

The additional term in Eq. (B.10) compared with Eq. (B.95) is {%f}%%f- The four-
component vector {%%E} can be easily computed because the explicit dependence of
{Rp} on CL is known. The term % 1s a scalar term that represents the sensitivity of
the lift coefficient with respect to the design variable 8y. Throughout the remainder of this
appendix, geometric design variables are discussed because the analytical expressions are
not as straightforward to obtain in comparison with the expressions for the nongeometric
design variables.

Here, the second and third components of Eq. (B.10) are discussed because of
the complexity involved in calculating Ueo, Voo, and 3. The second component of

Eq. (B.10) can be written as shown below:
d’R _dRg  dRZ
dfe  dBx  dbk

dRZ . . . . oo \ v dX
— M M, My + = = —_
dB, MtV -+< ’*aoo)““(M”Em)]{dﬂk}

(B.11)

where

o dR; . = . .
The derivative of d_ﬁf' can be calculated analytically; the term %ﬁl involves the metric
terms M; and M, as well as the free-stream velocities G, and Vo, and their derivatives.

- . ~I ~I .
These derivatives u,, and v_, are given as

o ()

Hoo i f £2




- Cov1—MZ )\ [ (=A%) [/Ax)\ .
0o — + | = |If
4 f f¢
(Ax)y =0, (Ay), =y,
(Ox)y =y, (Ay), =0
fx = (1 — M4 sin’a)2AxAx + 2MZ, sin a cos o Ay Ax’

fy = (1 - Mgocosza)2AyA)'I + 2M2, sin a cos a AxAy' (B.12)

The derivatives of U, and v, with respect to x and y can be obtained by substituting the
corresponding derivatives of Ax, Ay, and f as shown below. For example, the derivative

of U, with respect to x can be shown as

- 7\ ’
oo = (CL ! M°°> ( Ay) [28x(1 - MZsin’a) + 2M2, sinacosaAy]xp

ox 47 f2
(B.13)

where the derivatives of f and Ay with respect to x are substituted in the expression
for u“"oo.

The third component of Eq. (B.10) can be written as
SR=>Vp-Vse =0 (B.14)

where Vg and V, are tangential velocities on the boundary and at the free stream. The

velocities Vg and V., can be calculated as

Voo = Mailoe — M1¥o, (B.15)

where My and M, are metric terms and up and vp are the Cartesian components of

velocity on the boundary cell face.



If we differentiate Eq. (B.14) with respect to the design variable 3y, then the following

equation results:

d°R _ dVp dV. (B.16)
dc — df  dBk ’

In Eq. (B.16), the term %%k& is straightforward to obtain. Derivatives of V,, with respect
to the design variable By can be obtained by differentiating the expression for Ve

from Eq. (B.15), where the derivative quantities ﬁ;o and V;o are calculated as shown

in Eq. (B.12).



APPENDIX C
ADJOINT VARIABLE FORMULATION FOR MARCHING
EULER PROBLEMS IN THREE DIMENSIONS

In this appendix, the adjoint-variable approach to calculate SD’s is outlined for the
Euler equations in three dimensions with a space marching algorithm. This procedure
has not yet been implemented in the present study. The system response C is augmented
with the product of the Lagrangian multiplier A; and the residual R; (where i corresponds

to the i cross plane in the streamwise direction) as
C=C+\'Ri(Q(8), Q1 (8). Q2 (B). X, B) (C.1)

At steady state, R; clearly is equal to zero. Here, Qf,Q{_,, and Q;_, represent the
steady-state field variables in the i, i — ] and i - 2 cross planes, respectively, and the j
and k indices are suppressed. If we differentiate Eq. (C.1) with respect to the design

variable i, the following equation results:
(o) (S {og) (S o} )
dée | 0Qi dgy J 0Q; dgy | 9Qimax d B
* {ax N T
(el {) [l e) + [m )+ {3
“1(_an S EON AT Bl I SR R TN
"(FelE s s )
A <_6Qi T R EToy A U T Sl o e
[OR; dX} {aR }>
(a_x]{d—_ 1\ 95,

OR; dQ! OR; dX OR;
T 1max imax 1max 1max
2 ([ { T + | T Ha) {75 ) ©
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In Eq. (C.2), the terms that correspond to the first cross plane, the i cross plane, and
the imax cross plane (imax is the number cross planes in the i direction) are given: the

reason for showing these terms in the equation becomes clear later in this appendix. The

Jacobian matrix [%J is a sparse. banded matrix and is calculated as [%%f] [ ‘3%} where

M is the metric term. The derivative of the residual expression with respect to the metric
terms is straightforward and is not given here. More details in regard to the construction
of this Jacobian matrix are given in Ref. [35]. Contributions from boundary conditions
are included in the above Jacobian matrix, which are essential for calculating accurate
SD’s. The term {%} is the grid-sensitivity vector, which is discussed in detail in
Chap. 3. As can be seen from Eq. (C.2), necessary adjustments are needed when i = 1
and the flow variables that correspond to the free stream are used for Qp. In Eq. (C.2),
[%J is the implicit Jacobian matrix discussed in Chap. 2. The term [%%(1] {diﬁ%} 1s
nonzero if the design variable is geometric, and the term {%} is nonzero if the design

variable is nongeometric. By rearranging Eq. (C.2) and collecting terms that correspond

to the sensitivity of the flow variables, we obtain
T < imax Y,
) i) o SV (F G ()
dfe \oX [ \dbcS " 9k — dj Bk
dQ*} T BRI] T[aRg' T[aag] {ac }T
A Ag A Bl
+{dﬂk ( Eon Il o el o
dQr OR; 1 [0Ris1] .1 [ORisa ac\T
+{dﬂk}(* B | [ 438 T |+{5a)
+{—d ;maX} AL [——aRim“} +{——6C }T (C.3)
dﬂk Hmax 6Qimax 6Qimax )

In Eq. (C.3), if we set the coefficients of { dar } to zero, the following equation results:

dC acC dX pC  ‘max AR;] [ dX oR;
d—m—{ﬁ} {d—m}%‘;*? ([ Hdﬂk}““{a—ﬂk}) €9

where the adjoint vectors are solved with Eq. (C.5).
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Qi oQ; Qi
_ [aRimax}T/\. _ { oC
aQimax rmex aQimax (CS)

As can be seen from Eq. (C.5), we must solve for the adjoint vectors backwards (i.e.,
we solve for Ajmax first and use it to solve for Ajmax—; and so on). Equation (C.5) can
be cast in incremental form. The incremental form to solve for A; is given as a two-step

procedure in Egs. (C.6a) and (C.6b):

=T
OR; _ [9Ri Tom, [ORis]” ORiy2]” aC
_ l:a—Ql:I AX = [5@:] /\i + [ an ] /\|+1 + [a_QlJ /\i+2 + {BE} (C.6a)

{1} = 00+ {mAN)

m=1,273.. (C.6b)
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APPENDIX D
WING-GEOMETRY PARAMETERIZATION

The baseline HSCT 24E wing-geometry parameterization of Ref. [81] was divided
into three typés: 7 planform variables, 15 section-thickness variables (5 each at the
root, break, and tip section), and 20 camber surface variables. These camber surface
elevation variables were simply the coefficients in a monomial product expansion of 20
terms. such as a(é—)" (%‘i) " In the present work, the camber parameterization has been

changed from that shown in Ref. [81]; however, the parameterization for the planform

and thickness variables have been retained.

The HSCT 24E geometry generated at NASA Langley Research Center resulted from
a multidisciplinary preliminary design based on linear aerodynamic codes; the geometry
is given in the wave-drag format. The wing is described at 18 span stations, which
are located as shown in Table D1. The seven planform variables required to describe
the double trapezoidal wing used in Ref. [81] are defined in Table D2 and Fig. D1.
The inboard- and outboard-span variables are shown with dashed arrows because they
are not involved in any present optimization studies. Because the HSCT 24E wing-
thickness distribution was linearly lofted from root to break and from break to tip, a
thickness parameterization is required only at these three wing stations. The thickness

parameterization used in Ref. [81] and in this work is defined in Table D3.

The HSCT 24E wing camber surface is described in the wave-drag, or Harris, format
by 20 chordwise entries at each of the 18 span stations (i.e., 360 parameters). In the
present work, the camber has been described at each wing station so that twist and both
leading- and trailing-edge flaps can>bc included. Locations of the four outboard flaps

on the HSCT 24E are shown in Fig. D2. The twist, camber, and flap parameterizations



are defined and shown in Table D4, Fig. D3, and Fig. D4. This present parameterization
requires the 72 (18x4) camber variables to approximate the HSCT 24E wing camber
surface elevation; this representation is better than that obtained with the representation
with 20 camber variables given in Ref. [81]. Additional spanwise control (or smoothing)

is required to model the flaps and for the optimization design-variable changes discussed

in the text.
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Table D1 HSCT 24E Wing-Section Locations

Wing section % distance along the span from side of fuselage
1 (Root) 0.00
2 5.94
3 11.88
4 17.82
5 23.77
6 29.71
7 35.65
8 (Break) 42.44
9 47.53
10 53.47
11 59.42
12 : 65.36
13 71.30
14 77.24
15 83.18
16 89.12
17 95.06

18 (Tip) 100.00




Table D2 Planform Parameters

RC Root chord

BC Break chord

TC Tip chord

XBC X - location of leading edge at break

XTC X - location of leading edge at tip
IS Inboard span

oS Outboard span

Table D3 Thickness Parameters

I Leading-edge radius parameter, Ro = 1.1019  [(1/6.0) * *2]

B Curvature forward of airfoil maximum thickness
t/C Thickness to chord ratio
Xm Location in (x/C) of airfoil maximum thickness
TAU Thickness trailing-edge half-angle

Table D4 Camber and Flap Parameters

ZTE Twist
A Camber
E Camber inflection
XMA X/C location of maximum camber
XHL X/C location of leading-edge flap hinge
oL, Deflection of leading-edge flap
XHT X/C location of trailing-edge flap hinge

o1 Deflection of trailing-edge flap
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APPENDIX E
AUTOMATIC DIFFERENTIATION

An AD tool is a chain-rule-based technique for differentiating an output function of
a program with respect to some specified input parameters. This technique is as old as
programmable systems [84]. This AD tool relies on the technique that every function is
calculated on a computer by executing some basic operations such as addition, subtraction,
and multiplication. Principally, two modes exist in automatic differentiation: the forward
mode and the reverse mode (which closely resembles the adjoint approach with a low

operation count and a large computational memory requirement).

An AD tool computes derivatives within the accuracy of the original function, unlike
divided differences. These tools differ from a symbolic manipulator in that the operation
count and memory are bounded a priori in terms of the complexity of the original code.
Calculation of the SD’s by hand differentiation is not feasible for complicated CFD
codes. For example, the differentiation of turbulence models by hand-differentiation is
not feasible, and failure to consistently differentiate these terms results in inaccurate SD’s
as shown by Korivi et al. [42]. Hand differentiation is error prone and requires a lot
of time to construct the differentiation code; on the other hand, automatic differentiation
constructs accurate derivatives of very complex codes in a very short time. In the near
future, usage of these codes may become routine for computing derivatives accurately
and efficiently; this tool can be used judiciously to obtain SD’s. (The case of using an

AD tool to obtain SD via the IIM is discussed later.)
The AD source tool used in the present study, ADIFOR (Automatic Dlfferentiation

of FORTRAN) [86-88], is jointly developed by Argonne National Laboratories and
Rice University. The ADIFOR tool differentiates any specified FORTRAN program
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output with respect to any program input parameters and uses a hybrid mode of forward
and reverse modes of AD: ADIFOR is a general-purpose tool that supports almost
all of FORTRAN 77 and is based on the ParaScope FORTRAN environment. The
differentiation of a FORTRAN program output with respect to an input parameter using
ADIFOR produces a FORTRAN code that computes the derivative of the function and
also computes the function itself upon execution of the resultant code. The original
program vectorization and parallelization are preserved and supports the error exception
handling routines. The Jacobian matrix is computed with the low-memory-based seed
matrix concept. The number of columns in the seed-matrix is the number of design
variables. More details in regard to how ADIFOR handles sparsity are given in Ref. [87].

The ADIFOR tool has been applied to various Fortran codes to obtain SD’s from
advanced CFD codes. Bischot et al. [89] and Green et al. [90] applied ADIFOR to
TLNS3D to obtain accurate SD’s with respect to turbulence modeling parameters and
nongeometric design variables. The application of ADIFOR to an iterative algorithm
is demonstrated in these studies. The application of ADIFOR to an iterative procedure

such as
Xt = Xr Pl 4R (E.1)

(which is a common iterative procedure in any CFD code, where P is the preconditioner,

R is the residual, and n is the iteration index) results in the following iterative procedure:

’

X" = X"~ (P~1) +R—P14+R (E.2)

1

where the derivative of the preconditioner (P~!) is also calculated. This iterative
procedure is used to compute derivatives from a differentiated version of TLNS3D.
However, in Eq. (E.2) the derivative of the preconditioner is computed and multiplied
by the residual at each iteration. This can be avoided because R is equal to zero at
steady state. Bischof et al. [89] suggested the deactivation of certain parts of the

differentiated program to calculate the derivatives. This step needs user intervention
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and is not automatic. Newman et al. [43] suggested that the use of ADIFOR with the
[IM results in an accurate and efficient evaluation of derivatives where only the derivative
of the residual is computed. The preconditioner used for the SD evaluation is the same
as that used for the analysis. Sherman et al. [91] applied ADIFOR via the IIM to
compute first- and second-order derivatives from a Navier-Stokes code with an algebraic
turbulence model. The SD’s computed with respect to geometric and nongeometric
design variables compare well with those computed with finite differences. Korivi et
al. [60] and Green et al. [77] applied ADIFOR to an algebraic grid-generation code
to compute the grid sensitivity and successfully obtained the SD’s with respect to the

geometric design variables.
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